ColossalAI/colossalai/zero/gemini/memory_tracer/utils.py

60 lines
1.8 KiB
Python
Raw Normal View History

from typing import Optional, Tuple
import torch
2022-03-29 07:45:48 +00:00
def colo_model_optimizer_usage(optim) -> Tuple[int, int]:
"""Trace the optimizer memory usage
Args:
2023-06-07 16:01:29 +00:00
optim (ShardedOptimV2): an instance of ShardedOptimizer
2022-03-29 07:45:48 +00:00
Returns:
Tuple[int, int]: cuda/cpu memory usage in Byte
"""
if optim is None:
return 0, 0
assert hasattr(optim, "get_memory_usage"), f"{type(optim)} has no attr get_memory_usage()"
2022-03-29 07:45:48 +00:00
return optim.get_memory_usage()
def colo_model_mem_usage(model: torch.nn.Module) -> Tuple[int, int]:
"""
Trace the model memory usage.
Args:
model (torch.nn.Module): a torch model
Returns:
Tuple[int, int]: cuda memory usage in Byte, cpu memory usage in Byte
"""
2022-03-29 07:45:48 +00:00
if model is None:
return 0, 0
def _get_tensor_mem_use(t: Optional[torch.Tensor]):
if t is None:
return 0, 0
assert isinstance(t, torch.Tensor)
_cpu_mem_usage, _cuda_mem_usage = 0, 0
if t.device.type == "cpu":
_cpu_mem_usage += t.numel() * t.element_size()
elif t.device.type == "cuda":
_cuda_mem_usage += t.numel() * t.element_size()
return _cuda_mem_usage, _cpu_mem_usage
cuda_mem_usage = 0
cpu_mem_usage = 0
for param in model.parameters():
if hasattr(param, "colo_attr"):
t_cuda, t_cpu = param.colo_attr.get_memory_usage()
2022-03-29 07:45:48 +00:00
cuda_mem_usage += t_cuda
cpu_mem_usage += t_cpu
else:
t_cuda, t_cpu = _get_tensor_mem_use(param.data)
cuda_mem_usage += t_cuda
cpu_mem_usage += t_cpu
t_cuda, t_cpu = _get_tensor_mem_use(param.grad)
cuda_mem_usage += t_cuda
cpu_mem_usage += t_cpu
return cuda_mem_usage, cpu_mem_usage