2022-11-08 07:15:13 +00:00
|
|
|
import os
|
|
|
|
from functools import partial
|
|
|
|
from tempfile import TemporaryDirectory
|
|
|
|
|
|
|
|
import pytest
|
|
|
|
import torch
|
|
|
|
import torch.distributed as dist
|
|
|
|
import torch.nn as nn
|
2023-04-06 06:51:35 +00:00
|
|
|
from torch.optim import Adam
|
|
|
|
|
|
|
|
import colossalai
|
|
|
|
from colossalai.testing import rerun_if_address_is_in_use, spawn
|
2022-11-08 07:15:13 +00:00
|
|
|
from colossalai.utils.checkpoint_io.constant import GLOBAL_META_FILE_NAME
|
|
|
|
from colossalai.utils.checkpoint_io.io import redist, save
|
2023-04-06 06:51:35 +00:00
|
|
|
from colossalai.utils.checkpoint_io.meta import (
|
|
|
|
ParamDistMeta,
|
|
|
|
ParamRedistMeta,
|
|
|
|
PipelineRedistMeta,
|
|
|
|
RankRedistMeta,
|
|
|
|
RedistMeta,
|
|
|
|
)
|
2022-11-08 07:15:13 +00:00
|
|
|
|
|
|
|
|
|
|
|
class DummyModel(nn.Module):
|
|
|
|
|
|
|
|
def __init__(self) -> None:
|
|
|
|
super().__init__()
|
|
|
|
self.fc = nn.Linear(20, 1)
|
|
|
|
|
|
|
|
|
|
|
|
def prepare_model_optim(shard: bool = False, zero: bool = False):
|
|
|
|
model = DummyModel()
|
|
|
|
if shard:
|
|
|
|
model.fc.weight.data = model.fc.weight.chunk(2, 1)[dist.get_rank() % 2]
|
|
|
|
if zero:
|
|
|
|
dp_rank = dist.get_rank() // 2
|
|
|
|
model.fc.weight.data = model.fc.weight.reshape(-1).split([3, model.fc.weight.size(1) - 3], 0)[dp_rank]
|
|
|
|
if dp_rank != 0:
|
|
|
|
model.fc.bias.data = torch.empty(0, dtype=model.fc.bias.dtype)
|
|
|
|
for p in model.parameters():
|
|
|
|
p.grad = torch.ones_like(p)
|
|
|
|
optimizer = Adam(model.parameters(), lr=1e-3)
|
|
|
|
optimizer.step()
|
|
|
|
return model, optimizer
|
|
|
|
|
|
|
|
|
|
|
|
def get_dist_metas(nprocs: int, zero: bool = False):
|
|
|
|
dp_world_size = nprocs // 2
|
|
|
|
dist_metas = []
|
|
|
|
for rank in range(nprocs):
|
|
|
|
if zero:
|
|
|
|
dist_metas.append({
|
|
|
|
'fc.weight':
|
|
|
|
ParamDistMeta(rank // 2,
|
|
|
|
dp_world_size,
|
|
|
|
rank % 2,
|
|
|
|
2,
|
|
|
|
tp_shard_dims=[1],
|
|
|
|
tp_num_parts=[2],
|
|
|
|
zero_numel=10,
|
|
|
|
zero_orig_shape=[1, 10]),
|
|
|
|
'fc.bias':
|
|
|
|
ParamDistMeta(rank // 2, dp_world_size, 0, 1, zero_numel=1, zero_orig_shape=[1])
|
|
|
|
})
|
|
|
|
else:
|
|
|
|
dist_metas.append({
|
|
|
|
'fc.weight': ParamDistMeta(rank // 2, dp_world_size, rank % 2, 2, tp_shard_dims=[1], tp_num_parts=[2]),
|
|
|
|
'fc.bias': ParamDistMeta(rank // 2, dp_world_size, 0, 1)
|
|
|
|
})
|
|
|
|
return dist_metas
|
|
|
|
|
|
|
|
|
|
|
|
def get_redist_meta(nprocs: int):
|
|
|
|
dp_world_size = nprocs // 2
|
|
|
|
rank_meta = {
|
|
|
|
'fc.weight': {rank: RankRedistMeta(rank // 2, rank % 2, 0) for rank in range(nprocs)},
|
|
|
|
'fc.bias': {rank: RankRedistMeta(rank // 2, 0, 0) for rank in range(nprocs)}
|
|
|
|
}
|
|
|
|
param_meta = {
|
|
|
|
'fc.weight': ParamRedistMeta(dp_world_size, 2, tp_shard_dims=[1], tp_num_parts=[2]),
|
|
|
|
'fc.bias': ParamRedistMeta(dp_world_size, 1)
|
|
|
|
}
|
|
|
|
return RedistMeta(rank_meta, [], param_meta)
|
|
|
|
|
|
|
|
|
|
|
|
def check_checkpoint_shape(dir_name: str):
|
|
|
|
global_meta = torch.load(os.path.join(dir_name, GLOBAL_META_FILE_NAME))
|
|
|
|
for meta_name in global_meta['meta']:
|
|
|
|
meta = torch.load(os.path.join(dir_name, meta_name))
|
|
|
|
assert meta['dist_meta'] is not None
|
|
|
|
assert len(meta['params']) == 2
|
|
|
|
assert len(meta['model']) == 1 and len(meta['optimizer']) == 1
|
|
|
|
model_state_dict = torch.load(os.path.join(dir_name, meta['model'][0]))
|
|
|
|
assert len(model_state_dict) == 2
|
|
|
|
assert model_state_dict['fc.weight'].size(1) == 10
|
|
|
|
optimizer_state_dict = torch.load(os.path.join(dir_name, meta['optimizer'][0]))
|
|
|
|
assert len(optimizer_state_dict['state']) == 2
|
|
|
|
assert 'param_groups' in optimizer_state_dict and 'state' in optimizer_state_dict
|
|
|
|
assert optimizer_state_dict['state'][0]['exp_avg'].size(1) == 10
|
|
|
|
assert optimizer_state_dict['state'][0]['exp_avg_sq'].size(1) == 10
|
|
|
|
|
|
|
|
|
|
|
|
def test_global_to_dist():
|
|
|
|
model, optimizer = prepare_model_optim()
|
|
|
|
with TemporaryDirectory() as dir_name:
|
|
|
|
save(dir_name, model, optimizer)
|
|
|
|
with TemporaryDirectory() as output_dir:
|
|
|
|
redist(dir_name, output_dir, get_redist_meta(4), get_dist_metas(4))
|
|
|
|
check_checkpoint_shape(output_dir)
|
|
|
|
|
|
|
|
|
2023-04-06 06:51:35 +00:00
|
|
|
def run_dist(rank, world_size, port, test_fn):
|
2022-11-08 07:15:13 +00:00
|
|
|
colossalai.launch(config={'parallel': {
|
|
|
|
'tensor': {
|
|
|
|
'mode': '1d',
|
|
|
|
'size': 2
|
|
|
|
}
|
|
|
|
}},
|
|
|
|
rank=rank,
|
|
|
|
world_size=world_size,
|
|
|
|
host='localhost',
|
|
|
|
port=port,
|
|
|
|
backend='nccl')
|
2023-04-06 06:51:35 +00:00
|
|
|
test_fn()
|
2022-11-08 07:15:13 +00:00
|
|
|
|
|
|
|
|
|
|
|
def run_save_dist(dir_name: str, zero: bool):
|
|
|
|
model, optmizer = prepare_model_optim(shard=True, zero=zero)
|
|
|
|
rank = dist.get_rank()
|
|
|
|
save(dir_name, model, optmizer, dist_meta=get_dist_metas(4, zero)[rank])
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.dist
|
|
|
|
@pytest.mark.parametrize("zero", [False, True])
|
|
|
|
@rerun_if_address_is_in_use()
|
|
|
|
def test_dist_to_dist(zero: bool):
|
|
|
|
with TemporaryDirectory() as dir_name:
|
|
|
|
fn = partial(run_save_dist, dir_name, zero)
|
|
|
|
world_size = 4
|
2023-04-06 06:51:35 +00:00
|
|
|
spawn(run_dist, world_size, test_fn=fn)
|
2022-11-08 07:15:13 +00:00
|
|
|
with TemporaryDirectory() as output_dir:
|
|
|
|
redist(dir_name, output_dir, get_redist_meta(4), get_dist_metas(4))
|
|
|
|
if not zero:
|
|
|
|
assert len(os.listdir(output_dir)) == 0
|
|
|
|
else:
|
|
|
|
check_checkpoint_shape(output_dir)
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == '__main__':
|
|
|
|
test_global_to_dist()
|
|
|
|
test_dist_to_dist(False)
|
|
|
|
test_dist_to_dist(True)
|