mirror of https://github.com/hpcaitech/ColossalAI
38 lines
1.2 KiB
Python
38 lines
1.2 KiB
Python
|
from typing import Optional
|
||
|
|
||
|
import torch.nn as nn
|
||
|
from transformers import BloomConfig, BloomForCausalLM, BloomModel
|
||
|
|
||
|
from ..base import RewardModel
|
||
|
|
||
|
|
||
|
class BLOOMRM(RewardModel):
|
||
|
"""
|
||
|
BLOOM Reward model.
|
||
|
|
||
|
Args:
|
||
|
pretrained (str): Pretrained model name or path.
|
||
|
config (BloomConfig): Model config.
|
||
|
checkpoint (bool): Enable gradient checkpointing.
|
||
|
lora_rank (int): LoRA rank.
|
||
|
lora_train_bias (str): LoRA bias training mode.
|
||
|
"""
|
||
|
|
||
|
def __init__(self,
|
||
|
pretrained: str = None,
|
||
|
config: Optional[BloomConfig] = None,
|
||
|
checkpoint: bool = False,
|
||
|
lora_rank: int = 0,
|
||
|
lora_train_bias: str = 'none') -> None:
|
||
|
if pretrained is not None:
|
||
|
model = BloomModel.from_pretrained(pretrained)
|
||
|
elif config is not None:
|
||
|
model = BloomModel(config)
|
||
|
else:
|
||
|
model = BloomModel(BloomConfig())
|
||
|
if checkpoint:
|
||
|
model.gradient_checkpointing_enable()
|
||
|
value_head = nn.Linear(model.config.hidden_size, 1)
|
||
|
value_head.weight.data.normal_(mean=0.0, std=1 / (model.config.hidden_size + 1))
|
||
|
super().__init__(model, value_head, lora_rank, lora_train_bias)
|