2023-01-16 07:55:41 +00:00
|
|
|
import torch
|
|
|
|
import torch.nn.init as init
|
|
|
|
from torch import Tensor
|
|
|
|
from torch import distributed as dist
|
|
|
|
from torch import nn as nn
|
|
|
|
from torch.nn import functional as F
|
|
|
|
from torch.nn.parameter import Parameter
|
|
|
|
|
|
|
|
from colossalai.context import ParallelMode, seed
|
|
|
|
from colossalai.core import global_context as gpc
|
2023-09-04 11:56:42 +00:00
|
|
|
from colossalai.legacy.registry import LAYERS, LOSSES, MODELS
|
2023-01-16 07:55:41 +00:00
|
|
|
from colossalai.nn.layer.base_layer import ParallelLayer
|
|
|
|
from colossalai.nn.layer.parallel_1d._utils import gather_forward_split_backward, reduce_grad, reduce_input
|
|
|
|
from colossalai.nn.layer.parallel_1d.layers import Linear1D_Row
|
|
|
|
from colossalai.nn.layer.utils import divide
|
|
|
|
from colossalai.utils import get_current_device
|
|
|
|
|
|
|
|
|
|
|
|
class VocabParallelEmbedding(torch.nn.Module):
|
|
|
|
"""Language model embeddings.
|
|
|
|
|
|
|
|
Arguments:
|
|
|
|
hidden_size: hidden size
|
|
|
|
vocab_size: vocabulary size
|
|
|
|
max_sequence_length: maximum size of sequence. This
|
|
|
|
is used for positional embedding
|
|
|
|
embedding_dropout_prob: dropout probability for embeddings
|
|
|
|
init_method: weight initialization method
|
|
|
|
num_tokentypes: size of the token-type embeddings. 0 value
|
|
|
|
will ignore this embedding
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(self,
|
|
|
|
hidden_size,
|
|
|
|
vocab_size,
|
|
|
|
max_sequence_length,
|
|
|
|
embedding_dropout_prob,
|
|
|
|
num_tokentypes=0,
|
|
|
|
dtype=torch.float):
|
|
|
|
super(VocabParallelEmbedding, self).__init__()
|
|
|
|
|
|
|
|
self.hidden_size = hidden_size
|
|
|
|
self.num_tokentypes = num_tokentypes
|
|
|
|
|
|
|
|
# Word embeddings (parallel).
|
|
|
|
self.word_embeddings = VocabParallelEmbedding1D(vocab_size, self.hidden_size, dtype=dtype)
|
|
|
|
self._word_embeddings_key = 'word_embeddings'
|
|
|
|
|
|
|
|
# Position embedding (serial).
|
|
|
|
self.position_embeddings = torch.nn.Embedding(max_sequence_length, self.hidden_size, dtype=dtype)
|
|
|
|
self._position_embeddings_key = 'position_embeddings'
|
|
|
|
# Initialize the position embeddings.
|
|
|
|
# self.init_method(self.position_embeddings.weight)
|
|
|
|
|
|
|
|
# Token type embedding.
|
|
|
|
# Add this as an optional field that can be added through
|
|
|
|
# method call so we can load a pretrain model without
|
|
|
|
# token types and add them as needed.
|
|
|
|
self._tokentype_embeddings_key = 'tokentype_embeddings'
|
|
|
|
if self.num_tokentypes > 0:
|
|
|
|
self.tokentype_embeddings = torch.nn.Embedding(self.num_tokentypes, self.hidden_size, dtype=dtype)
|
|
|
|
# Initialize the token-type embeddings.
|
|
|
|
# self.init_method(self.tokentype_embeddings.weight)
|
|
|
|
else:
|
|
|
|
self.tokentype_embeddings = None
|
|
|
|
|
|
|
|
# Embeddings dropout
|
|
|
|
self.embedding_dropout = torch.nn.Dropout(embedding_dropout_prob)
|
|
|
|
|
|
|
|
def zero_parameters(self):
|
|
|
|
"""Zero out all parameters in embedding."""
|
|
|
|
self.word_embeddings.weight.data.fill_(0)
|
|
|
|
self.word_embeddings.weight.shared = True
|
|
|
|
self.position_embeddings.weight.data.fill_(0)
|
|
|
|
self.position_embeddings.weight.shared = True
|
|
|
|
if self.num_tokentypes > 0:
|
|
|
|
self.tokentype_embeddings.weight.data.fill_(0)
|
|
|
|
self.tokentype_embeddings.weight.shared = True
|
|
|
|
|
|
|
|
def add_tokentype_embeddings(self, num_tokentypes):
|
|
|
|
"""Add token-type embedding. This function is provided so we can add
|
|
|
|
token-type embeddings in case the pretrained model does not have it.
|
|
|
|
This allows us to load the model normally and then add this embedding.
|
|
|
|
"""
|
|
|
|
if self.tokentype_embeddings is not None:
|
|
|
|
raise Exception('tokentype embeddings is already initialized')
|
|
|
|
if torch.distributed.get_rank() == 0:
|
|
|
|
print('adding embedding for {} tokentypes'.format(num_tokentypes), flush=True)
|
|
|
|
self.num_tokentypes = num_tokentypes
|
|
|
|
self.tokentype_embeddings = torch.nn.Embedding(num_tokentypes, self.hidden_size)
|
|
|
|
# Initialize the token-type embeddings.
|
|
|
|
# self.init_method(self.tokentype_embeddings.weight)
|
|
|
|
|
|
|
|
def forward(self, input_ids, position_ids=None, tokentype_ids=None):
|
|
|
|
# Embeddings.
|
|
|
|
if input_ids is not None:
|
|
|
|
input_shape = input_ids.size()
|
|
|
|
input_ids = input_ids.view(-1, input_shape[-1])
|
|
|
|
words_embeddings = self.word_embeddings(input_ids)
|
|
|
|
|
|
|
|
if position_ids is not None:
|
|
|
|
position_ids = position_ids.view(-1, input_shape[-1])
|
|
|
|
if position_ids is None:
|
|
|
|
position_ids = torch.arange(0, input_shape[-1] + 0, dtype=torch.long, device=get_current_device())
|
|
|
|
position_ids = position_ids.unsqueeze(0).view(-1, input_shape[-1])
|
|
|
|
position_embeddings = self.position_embeddings(position_ids)
|
|
|
|
|
|
|
|
embeddings = words_embeddings + position_embeddings
|
|
|
|
|
|
|
|
# Dropout.
|
|
|
|
with seed(ParallelMode.TENSOR):
|
|
|
|
embeddings = self.embedding_dropout(embeddings)
|
|
|
|
return embeddings
|
|
|
|
|
|
|
|
def state_dict_for_save_checkpoint(self, destination=None, prefix='', keep_vars=False):
|
|
|
|
"""For easy load."""
|
|
|
|
|
|
|
|
state_dict_ = {}
|
|
|
|
state_dict_[self._word_embeddings_key] \
|
|
|
|
= self.word_embeddings.state_dict(destination, prefix, keep_vars)
|
|
|
|
state_dict_[self._position_embeddings_key] \
|
|
|
|
= self.position_embeddings.state_dict(
|
|
|
|
destination, prefix, keep_vars)
|
|
|
|
if self.num_tokentypes > 0:
|
|
|
|
state_dict_[self._tokentype_embeddings_key] \
|
|
|
|
= self.tokentype_embeddings.state_dict(
|
|
|
|
destination, prefix, keep_vars)
|
|
|
|
|
|
|
|
return state_dict_
|
|
|
|
|
|
|
|
def load_state_dict(self, state_dict, strict=True):
|
|
|
|
"""Customized load."""
|
|
|
|
|
|
|
|
# Word embedding.
|
|
|
|
if self._word_embeddings_key in state_dict:
|
|
|
|
state_dict_ = state_dict[self._word_embeddings_key]
|
|
|
|
else:
|
|
|
|
# for backward compatibility.
|
|
|
|
state_dict_ = {}
|
|
|
|
for key in state_dict.keys():
|
|
|
|
if 'word_embeddings' in key:
|
|
|
|
state_dict_[key.split('word_embeddings.')[1]] \
|
|
|
|
= state_dict[key]
|
|
|
|
self.word_embeddings.load_state_dict(state_dict_, strict=strict)
|
|
|
|
|
|
|
|
# Position embedding.
|
|
|
|
if self._position_embeddings_key in state_dict:
|
|
|
|
state_dict_ = state_dict[self._position_embeddings_key]
|
|
|
|
else:
|
|
|
|
# for backward compatibility.
|
|
|
|
state_dict_ = {}
|
|
|
|
for key in state_dict.keys():
|
|
|
|
if 'position_embeddings' in key:
|
|
|
|
state_dict_[key.split('position_embeddings.')[1]] \
|
|
|
|
= state_dict[key]
|
|
|
|
self.position_embeddings.load_state_dict(state_dict_, strict=strict)
|
|
|
|
|
|
|
|
# Tokentype embedding.
|
|
|
|
if self.num_tokentypes > 0:
|
|
|
|
state_dict_ = {}
|
|
|
|
if self._tokentype_embeddings_key in state_dict:
|
|
|
|
state_dict_ = state_dict[self._tokentype_embeddings_key]
|
|
|
|
else:
|
|
|
|
# for backward compatibility.
|
|
|
|
for key in state_dict.keys():
|
|
|
|
if 'tokentype_embeddings' in key:
|
|
|
|
state_dict_[key.split('tokentype_embeddings.')[1]] \
|
|
|
|
= state_dict[key]
|
|
|
|
if len(state_dict_.keys()) > 0:
|
|
|
|
self.tokentype_embeddings.load_state_dict(state_dict_, strict=strict)
|
|
|
|
else:
|
|
|
|
print('***WARNING*** expected tokentype embeddings in the '
|
|
|
|
'checkpoint but could not find it',
|
|
|
|
flush=True)
|
|
|
|
|
|
|
|
|
|
|
|
class VocabParallelEmbedding1D(torch.nn.Module):
|
|
|
|
"""Embedding parallelized in the vocabulary dimension.
|
|
|
|
|
|
|
|
This is mainly adapted from torch.nn.Embedding and all the default
|
|
|
|
values are kept.
|
|
|
|
Arguments:
|
|
|
|
num_embeddings: vocabulary size.
|
|
|
|
embedding_dim: size of hidden state.
|
|
|
|
init_method: method to initialize weights.
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(self, num_embeddings, embedding_dim, dtype=None, init_method=None):
|
|
|
|
super(VocabParallelEmbedding1D, self).__init__()
|
|
|
|
# Keep the input dimensions.
|
|
|
|
self.num_embeddings = num_embeddings
|
|
|
|
self.embedding_dim = embedding_dim
|
|
|
|
# Set the details for compatibility.
|
|
|
|
self.padding_idx = None
|
|
|
|
self.max_norm = None
|
|
|
|
self.norm_type = 2.
|
|
|
|
self.scale_grad_by_freq = False
|
|
|
|
self.sparse = False
|
|
|
|
self._weight = None
|
|
|
|
self.tensor_model_parallel_size = gpc.tensor_parallel_size
|
|
|
|
# Divide the weight matrix along the vocabulary dimension.
|
|
|
|
self.vocab_start_index, self.vocab_end_index = \
|
|
|
|
VocabUtility.vocab_range_from_global_vocab_size(
|
|
|
|
self.num_embeddings, gpc.get_local_rank(ParallelMode.PARALLEL_1D),
|
|
|
|
self.tensor_model_parallel_size)
|
|
|
|
self.num_embeddings_per_partition = self.vocab_end_index - \
|
|
|
|
self.vocab_start_index
|
|
|
|
|
|
|
|
# Allocate weights and initialize.
|
|
|
|
factory_kwargs = {'device': get_current_device(), 'dtype': dtype}
|
|
|
|
self.weight = Parameter(torch.empty(self.num_embeddings_per_partition, self.embedding_dim, **factory_kwargs))
|
|
|
|
init.uniform_(self.weight, -1, 1)
|
|
|
|
|
|
|
|
def forward(self, input_):
|
|
|
|
if self.tensor_model_parallel_size > 1:
|
|
|
|
# Build the mask.
|
|
|
|
input_mask = (input_ < self.vocab_start_index) | \
|
|
|
|
(input_ >= self.vocab_end_index)
|
|
|
|
# Mask the input.
|
|
|
|
masked_input = input_.clone() - self.vocab_start_index
|
|
|
|
masked_input[input_mask] = 0
|
|
|
|
else:
|
|
|
|
masked_input = input_
|
|
|
|
# Get the embeddings.
|
|
|
|
output_parallel = F.embedding(masked_input, self.weight, self.padding_idx, self.max_norm, self.norm_type,
|
|
|
|
self.scale_grad_by_freq, self.sparse)
|
|
|
|
# Mask the output embedding.
|
|
|
|
if self.tensor_model_parallel_size > 1:
|
|
|
|
output_parallel[input_mask, :] = 0.0
|
|
|
|
# Reduce across all the model parallel GPUs.
|
|
|
|
output = output = reduce_input(output_parallel, ParallelMode.PARALLEL_1D)
|
|
|
|
return output
|
|
|
|
|
|
|
|
|
|
|
|
@LOSSES.register_module
|
|
|
|
class vocab_parallel_cross_entropy(nn.Module):
|
|
|
|
|
|
|
|
def __init__(self):
|
|
|
|
super().__init__()
|
|
|
|
|
|
|
|
def forward(self, vocab_parallel_logits, target):
|
|
|
|
"""Helper function for the cross entropy."""
|
|
|
|
vocab_parallel_logits = vocab_parallel_logits[..., :-1, :].contiguous()
|
|
|
|
target = target[..., 1:].contiguous()
|
|
|
|
return _VocabParallelCrossEntropy.apply(vocab_parallel_logits.view(-1, vocab_parallel_logits.size(-1)),
|
|
|
|
target.view(-1))
|
|
|
|
|
|
|
|
|
|
|
|
class _VocabParallelCrossEntropy(torch.autograd.Function):
|
|
|
|
|
|
|
|
@staticmethod
|
|
|
|
def forward(ctx, vocab_parallel_logits, target):
|
|
|
|
|
|
|
|
# Maximum value along vocab dimension across all GPUs.
|
|
|
|
logits_max = torch.max(vocab_parallel_logits, dim=-1)[0]
|
|
|
|
torch.distributed.all_reduce(logits_max,
|
|
|
|
op=torch.distributed.ReduceOp.MAX,
|
|
|
|
group=gpc.get_group(ParallelMode.PARALLEL_1D))
|
|
|
|
# Subtract the maximum value.
|
|
|
|
vocab_parallel_logits.sub_(logits_max.unsqueeze(dim=-1))
|
|
|
|
|
|
|
|
# Get the partition's vocab indices
|
|
|
|
get_vocab_range = VocabUtility.vocab_range_from_per_partition_vocab_size
|
|
|
|
partition_vocab_size = vocab_parallel_logits.size()[-1]
|
|
|
|
rank = gpc.get_local_rank(ParallelMode.PARALLEL_1D)
|
|
|
|
world_size = gpc.tensor_parallel_size
|
|
|
|
vocab_start_index, vocab_end_index = get_vocab_range(partition_vocab_size, rank, world_size)
|
|
|
|
|
|
|
|
# Create a mask of valid vocab ids (1 means it needs to be masked).
|
|
|
|
target_mask = (target < vocab_start_index) | (target >= vocab_end_index)
|
|
|
|
masked_target = target.clone() - vocab_start_index
|
|
|
|
masked_target[target_mask] = 0
|
|
|
|
|
|
|
|
# Get predicted-logits = logits[target].
|
|
|
|
# For Simplicity, we convert logits to a 2-D tensor with size
|
|
|
|
# [*, partition-vocab-size] and target to a 1-D tensor of size [*].
|
|
|
|
logits_2d = vocab_parallel_logits.view(-1, partition_vocab_size)
|
|
|
|
masked_target_1d = masked_target.view(-1)
|
|
|
|
arange_1d = torch.arange(start=0, end=logits_2d.size()[0], device=logits_2d.device)
|
|
|
|
predicted_logits_1d = logits_2d[arange_1d, masked_target_1d]
|
|
|
|
predicted_logits_1d = predicted_logits_1d.clone().contiguous()
|
|
|
|
predicted_logits = predicted_logits_1d.view_as(target)
|
|
|
|
predicted_logits[target_mask] = 0.0
|
|
|
|
# All reduce is needed to get the chunks from other GPUs.
|
|
|
|
torch.distributed.all_reduce(predicted_logits,
|
|
|
|
op=torch.distributed.ReduceOp.SUM,
|
|
|
|
group=gpc.get_group(ParallelMode.PARALLEL_1D))
|
|
|
|
|
|
|
|
# Sum of exponential of logits along vocab dimension across all GPUs.
|
|
|
|
exp_logits = vocab_parallel_logits
|
|
|
|
torch.exp(vocab_parallel_logits, out=exp_logits)
|
|
|
|
sum_exp_logits = exp_logits.sum(dim=-1)
|
|
|
|
torch.distributed.all_reduce(sum_exp_logits,
|
|
|
|
op=torch.distributed.ReduceOp.SUM,
|
|
|
|
group=gpc.get_group(ParallelMode.PARALLEL_1D))
|
|
|
|
|
|
|
|
# Loss = log(sum(exp(logits))) - predicted-logit.
|
|
|
|
loss = torch.log(sum_exp_logits) - predicted_logits
|
|
|
|
loss = loss.mean()
|
|
|
|
# Store softmax, target-mask and masked-target for backward pass.
|
|
|
|
exp_logits.div_(sum_exp_logits.unsqueeze(dim=-1))
|
|
|
|
ctx.save_for_backward(exp_logits, target_mask, masked_target_1d)
|
|
|
|
return loss
|
|
|
|
|
|
|
|
@staticmethod
|
|
|
|
def backward(ctx, grad_output):
|
|
|
|
|
2023-06-08 08:09:32 +00:00
|
|
|
# Retrieve tensors from the forward path.
|
2023-01-16 07:55:41 +00:00
|
|
|
softmax, target_mask, masked_target_1d = ctx.saved_tensors
|
|
|
|
|
|
|
|
# All the inputs have softmax as their gradient.
|
|
|
|
grad_input = softmax
|
|
|
|
# For simplicity, work with the 2D gradient.
|
|
|
|
partition_vocab_size = softmax.size()[-1]
|
|
|
|
grad_2d = grad_input.view(-1, partition_vocab_size)
|
|
|
|
|
|
|
|
# Add the gradient from matching classes.
|
|
|
|
arange_1d = torch.arange(start=0, end=grad_2d.size()[0], device=grad_2d.device)
|
|
|
|
grad_2d[arange_1d, masked_target_1d] -= (1.0 - target_mask.view(-1).float())
|
|
|
|
|
|
|
|
# Finally elementwise multiplication with the output gradients.
|
|
|
|
grad_input.mul_(grad_output.unsqueeze(dim=-1))
|
|
|
|
|
|
|
|
return grad_input, None
|
|
|
|
|
|
|
|
|
|
|
|
class VocabUtility:
|
|
|
|
"""Split the vocabulary into `world_size` chunks amd return the
|
|
|
|
first and last index of the vocabulary belonging to the `rank`
|
|
|
|
partition: Note that indices in [fist, last)"""
|
|
|
|
|
|
|
|
@staticmethod
|
|
|
|
def vocab_range_from_per_partition_vocab_size(per_partition_vocab_size, rank, world_size):
|
|
|
|
index_f = rank * per_partition_vocab_size
|
|
|
|
index_l = index_f + per_partition_vocab_size
|
|
|
|
return index_f, index_l
|
|
|
|
|
|
|
|
@staticmethod
|
|
|
|
def vocab_range_from_global_vocab_size(global_vocab_size, rank, world_size):
|
|
|
|
per_partition_vocab_size = divide(global_vocab_size, world_size)
|
|
|
|
return VocabUtility.vocab_range_from_per_partition_vocab_size(per_partition_vocab_size, rank, world_size)
|
|
|
|
|
|
|
|
|
|
|
|
class VocabParallelGPTLMHead1D(ParallelLayer):
|
|
|
|
"""
|
|
|
|
Language model head that shares the same parameters with the embedding matrix.
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(self, embed=None, vocab_size=None, dtype=None, embed_dim=None):
|
|
|
|
super().__init__()
|
|
|
|
if embed is not None:
|
|
|
|
self.head = embed
|
|
|
|
else:
|
|
|
|
self.head = VocabParallelEmbedding1D(vocab_size, embed_dim, dtype=dtype)
|
|
|
|
|
|
|
|
def forward(self, x: Tensor) -> Tensor:
|
|
|
|
x = reduce_grad(x, ParallelMode.PARALLEL_1D)
|
|
|
|
x = F.linear(x, self.head.weight)
|
|
|
|
return x
|
|
|
|
|
|
|
|
|
|
|
|
###################################
|
|
|
|
|
|
|
|
|
|
|
|
class HiddenParallelEmbedding(torch.nn.Module):
|
|
|
|
"""Language model embeddings.
|
|
|
|
|
|
|
|
Arguments:
|
|
|
|
hidden_size: hidden size
|
|
|
|
vocab_size: vocabulary size
|
|
|
|
max_sequence_length: maximum size of sequence. This
|
|
|
|
is used for positional embedding
|
|
|
|
embedding_dropout_prob: dropout probability for embeddings
|
|
|
|
init_method: weight initialization method
|
|
|
|
num_tokentypes: size of the token-type embeddings. 0 value
|
|
|
|
will ignore this embedding
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(
|
|
|
|
self,
|
|
|
|
hidden_size,
|
|
|
|
vocab_size,
|
|
|
|
max_sequence_length,
|
|
|
|
embedding_dropout_prob,
|
|
|
|
dtype=torch.float,
|
|
|
|
padding_idx: int = 0,
|
|
|
|
num_tokentypes=0,
|
|
|
|
):
|
|
|
|
super(HiddenParallelEmbedding, self).__init__()
|
|
|
|
|
|
|
|
self.hidden_size = hidden_size
|
|
|
|
self.num_tokentypes = num_tokentypes
|
|
|
|
|
|
|
|
# Word embeddings (parallel).
|
|
|
|
self.word_embeddings = HiddenParallelEmbedding1D(vocab_size, hidden_size, dtype, padding_idx)
|
|
|
|
self._word_embeddings_key = 'word_embeddings'
|
|
|
|
|
|
|
|
# Position embedding (serial).
|
|
|
|
self.position_embeddings = torch.nn.Embedding(max_sequence_length, self.hidden_size)
|
|
|
|
self._position_embeddings_key = 'position_embeddings'
|
|
|
|
# Initialize the position embeddings.
|
|
|
|
# self.init_method(self.position_embeddings.weight)
|
|
|
|
|
|
|
|
# Token type embedding.
|
|
|
|
# Add this as an optional field that can be added through
|
|
|
|
# method call so we can load a pretrain model without
|
|
|
|
# token types and add them as needed.
|
|
|
|
self._tokentype_embeddings_key = 'tokentype_embeddings'
|
|
|
|
if self.num_tokentypes > 0:
|
|
|
|
self.tokentype_embeddings = torch.nn.Embedding(self.num_tokentypes, self.hidden_size)
|
|
|
|
# Initialize the token-type embeddings.
|
|
|
|
# self.init_method(self.tokentype_embeddings.weight)
|
|
|
|
else:
|
|
|
|
self.tokentype_embeddings = None
|
|
|
|
|
|
|
|
# Embeddings dropout
|
|
|
|
self.embedding_dropout = torch.nn.Dropout(embedding_dropout_prob)
|
|
|
|
|
|
|
|
def zero_parameters(self):
|
|
|
|
"""Zero out all parameters in embedding."""
|
|
|
|
self.word_embeddings.weight.data.fill_(0)
|
|
|
|
self.word_embeddings.weight.shared = True
|
|
|
|
self.position_embeddings.weight.data.fill_(0)
|
|
|
|
self.position_embeddings.weight.shared = True
|
|
|
|
if self.num_tokentypes > 0:
|
|
|
|
self.tokentype_embeddings.weight.data.fill_(0)
|
|
|
|
self.tokentype_embeddings.weight.shared = True
|
|
|
|
|
|
|
|
def add_tokentype_embeddings(self, num_tokentypes):
|
|
|
|
"""Add token-type embedding. This function is provided so we can add
|
|
|
|
token-type embeddings in case the pretrained model does not have it.
|
|
|
|
This allows us to load the model normally and then add this embedding.
|
|
|
|
"""
|
|
|
|
if self.tokentype_embeddings is not None:
|
|
|
|
raise Exception('tokentype embeddings is already initialized')
|
|
|
|
if torch.distributed.get_rank() == 0:
|
|
|
|
print('adding embedding for {} tokentypes'.format(num_tokentypes), flush=True)
|
|
|
|
self.num_tokentypes = num_tokentypes
|
|
|
|
self.tokentype_embeddings = torch.nn.Embedding(num_tokentypes, self.hidden_size)
|
|
|
|
# Initialize the token-type embeddings.
|
|
|
|
# self.init_method(self.tokentype_embeddings.weight)
|
|
|
|
|
|
|
|
def forward(self, input_ids, position_ids=None, tokentype_ids=None):
|
|
|
|
if input_ids is not None:
|
|
|
|
input_shape = input_ids.size()
|
|
|
|
input_ids = input_ids.view(-1, input_shape[-1])
|
|
|
|
words_embeddings = self.word_embeddings(input_ids)
|
|
|
|
|
|
|
|
if position_ids is not None:
|
|
|
|
position_ids = position_ids.view(-1, input_shape[-1])
|
|
|
|
if position_ids is None:
|
|
|
|
position_ids = torch.arange(0, input_shape[-1] + 0, dtype=torch.long, device=get_current_device())
|
|
|
|
position_ids = position_ids.unsqueeze(0).view(-1, input_shape[-1])
|
|
|
|
position_embeddings = self.position_embeddings(position_ids)
|
|
|
|
|
|
|
|
embeddings = words_embeddings + position_embeddings
|
|
|
|
|
|
|
|
# Dropout.
|
|
|
|
with seed(ParallelMode.TENSOR):
|
|
|
|
embeddings = self.embedding_dropout(embeddings)
|
|
|
|
return embeddings
|
|
|
|
|
|
|
|
def state_dict_for_save_checkpoint(self, destination=None, prefix='', keep_vars=False):
|
|
|
|
"""For easy load."""
|
|
|
|
|
|
|
|
state_dict_ = {}
|
|
|
|
state_dict_[self._word_embeddings_key] \
|
|
|
|
= self.word_embeddings.state_dict(destination, prefix, keep_vars)
|
|
|
|
state_dict_[self._position_embeddings_key] \
|
|
|
|
= self.position_embeddings.state_dict(
|
|
|
|
destination, prefix, keep_vars)
|
|
|
|
if self.num_tokentypes > 0:
|
|
|
|
state_dict_[self._tokentype_embeddings_key] \
|
|
|
|
= self.tokentype_embeddings.state_dict(
|
|
|
|
destination, prefix, keep_vars)
|
|
|
|
|
|
|
|
return state_dict_
|
|
|
|
|
|
|
|
def load_state_dict(self, state_dict, strict=True):
|
|
|
|
"""Customized load."""
|
|
|
|
|
|
|
|
# Word embedding.
|
|
|
|
if self._word_embeddings_key in state_dict:
|
|
|
|
state_dict_ = state_dict[self._word_embeddings_key]
|
|
|
|
else:
|
|
|
|
# for backward compatibility.
|
|
|
|
state_dict_ = {}
|
|
|
|
for key in state_dict.keys():
|
|
|
|
if 'word_embeddings' in key:
|
|
|
|
state_dict_[key.split('word_embeddings.')[1]] \
|
|
|
|
= state_dict[key]
|
|
|
|
self.word_embeddings.load_state_dict(state_dict_, strict=strict)
|
|
|
|
|
|
|
|
# Position embedding.
|
|
|
|
if self._position_embeddings_key in state_dict:
|
|
|
|
state_dict_ = state_dict[self._position_embeddings_key]
|
|
|
|
else:
|
|
|
|
# for backward compatibility.
|
|
|
|
state_dict_ = {}
|
|
|
|
for key in state_dict.keys():
|
|
|
|
if 'position_embeddings' in key:
|
|
|
|
state_dict_[key.split('position_embeddings.')[1]] \
|
|
|
|
= state_dict[key]
|
|
|
|
self.position_embeddings.load_state_dict(state_dict_, strict=strict)
|
|
|
|
|
|
|
|
# Tokentype embedding.
|
|
|
|
if self.num_tokentypes > 0:
|
|
|
|
state_dict_ = {}
|
|
|
|
if self._tokentype_embeddings_key in state_dict:
|
|
|
|
state_dict_ = state_dict[self._tokentype_embeddings_key]
|
|
|
|
else:
|
|
|
|
# for backward compatibility.
|
|
|
|
for key in state_dict.keys():
|
|
|
|
if 'tokentype_embeddings' in key:
|
|
|
|
state_dict_[key.split('tokentype_embeddings.')[1]] \
|
|
|
|
= state_dict[key]
|
|
|
|
if len(state_dict_.keys()) > 0:
|
|
|
|
self.tokentype_embeddings.load_state_dict(state_dict_, strict=strict)
|
|
|
|
else:
|
|
|
|
print('***WARNING*** expected tokentype embeddings in the '
|
|
|
|
'checkpoint but could not find it',
|
|
|
|
flush=True)
|
|
|
|
|
|
|
|
|
|
|
|
class HiddenParallelEmbedding1D(torch.nn.Module):
|
|
|
|
"""Embedding parallelized in the vocabulary dimension.
|
|
|
|
|
|
|
|
This is mainly adapted from torch.nn.Embedding and all the default
|
|
|
|
values are kept.
|
|
|
|
Arguments:
|
|
|
|
num_embeddings: vocabulary size.
|
|
|
|
embedding_dim: size of hidden state.
|
|
|
|
init_method: method to initialize weights.
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(self, num_embeddings, embedding_dim, dtype=torch.float, padding_idx: int = None, init_method=None):
|
|
|
|
super(HiddenParallelEmbedding1D, self).__init__()
|
|
|
|
# Keep the input dimensions.
|
|
|
|
self.num_embeddings = num_embeddings
|
|
|
|
self.embedding_dim = embedding_dim
|
|
|
|
embed_dim_per_partition = divide(embedding_dim, gpc.tensor_parallel_size)
|
|
|
|
# Set the details for compatibility.
|
|
|
|
self.padding_idx = padding_idx
|
|
|
|
self.max_norm = None
|
|
|
|
self.norm_type = 2.
|
|
|
|
self.scale_grad_by_freq = False
|
|
|
|
self.sparse = False
|
|
|
|
self._weight = None
|
|
|
|
|
|
|
|
# Allocate weights and initialize.
|
|
|
|
factory_kwargs = {'device': get_current_device(), 'dtype': dtype}
|
|
|
|
self.weight = Parameter(torch.empty(num_embeddings, embed_dim_per_partition, **factory_kwargs))
|
|
|
|
init.uniform_(self.weight, -1, 1)
|
|
|
|
|
|
|
|
def forward(self, input_):
|
|
|
|
|
|
|
|
# Get the embeddings.
|
|
|
|
output_parallel = F.embedding(input_, self.weight, self.padding_idx, self.max_norm, self.norm_type,
|
|
|
|
self.scale_grad_by_freq, self.sparse)
|
|
|
|
|
|
|
|
# Reduce across all the model parallel GPUs.
|
|
|
|
output = gather_forward_split_backward(output_parallel, ParallelMode.PARALLEL_1D, dim=-1)
|
|
|
|
return output
|
|
|
|
|
|
|
|
|
|
|
|
@LAYERS.register_module
|
|
|
|
class HiddenParallelGPTLMHead1D(ParallelLayer):
|
|
|
|
"""
|
|
|
|
Language model head that shares the same parameters with the embedding matrix.
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(
|
|
|
|
self,
|
|
|
|
embed=None,
|
|
|
|
embed_dim=None,
|
|
|
|
vocab_size=None,
|
|
|
|
dtype=None,
|
|
|
|
):
|
|
|
|
super().__init__()
|
|
|
|
if embed is not None:
|
|
|
|
self.head = embed
|
|
|
|
self.synced_embed = True
|
|
|
|
else:
|
|
|
|
# self.embedding = HiddenParallelEmbedding1D(vocab_size, hidden_size, dtype, padding_idx)
|
|
|
|
# (hidden_size/q, vocab_size)
|
|
|
|
self.synced_embed = False
|
|
|
|
self.head = Linear1D_Row(in_features=embed_dim,
|
|
|
|
out_features=vocab_size,
|
|
|
|
bias=False,
|
|
|
|
dtype=dtype,
|
|
|
|
parallel_input=False)
|
|
|
|
|
|
|
|
def forward(self, x: Tensor) -> Tensor:
|
|
|
|
if self.synced_embed:
|
|
|
|
x = F.linear(x, self.head.weight)
|
|
|
|
else:
|
|
|
|
x = self.head(x)
|
|
|
|
|
|
|
|
return x
|