2023-05-05 11:36:10 +00:00
|
|
|
import random
|
|
|
|
|
|
|
|
import numpy as np
|
|
|
|
import torch
|
|
|
|
import torch.distributed as dist
|
|
|
|
from torch.utils.data import DataLoader
|
|
|
|
from torch.utils.data.distributed import DistributedSampler
|
|
|
|
|
|
|
|
from .plugin_base import Plugin
|
|
|
|
|
|
|
|
|
|
|
|
class DPPluginBase(Plugin):
|
2023-09-19 06:20:26 +00:00
|
|
|
"""This is a base class for all DP plugins. It sets up world size and rank, and provides data loader creation."""
|
2023-05-05 11:36:10 +00:00
|
|
|
|
|
|
|
def __init__(self) -> None:
|
|
|
|
super().__init__()
|
2023-09-19 06:20:26 +00:00
|
|
|
assert (
|
|
|
|
dist.is_initialized()
|
|
|
|
), "torch.distributed is not initialized, please use colossalai.launch to create the distributed environment"
|
2023-05-05 11:36:10 +00:00
|
|
|
self.rank = dist.get_rank()
|
|
|
|
self.world_size = dist.get_world_size()
|
|
|
|
|
2023-09-19 06:20:26 +00:00
|
|
|
def prepare_dataloader(
|
2024-02-05 07:14:56 +00:00
|
|
|
self,
|
|
|
|
dataset,
|
|
|
|
batch_size,
|
|
|
|
shuffle=False,
|
|
|
|
seed=1024,
|
|
|
|
drop_last=False,
|
|
|
|
pin_memory=False,
|
|
|
|
num_workers=0,
|
|
|
|
distributed_sampler_cls=None,
|
|
|
|
**kwargs,
|
2023-09-19 06:20:26 +00:00
|
|
|
):
|
2023-05-05 11:36:10 +00:00
|
|
|
r"""
|
|
|
|
Prepare a dataloader for distributed training. The dataloader will be wrapped by
|
|
|
|
`torch.utils.data.DataLoader` and `torch.utils.data.DistributedSampler`.
|
|
|
|
|
|
|
|
|
|
|
|
Args:
|
|
|
|
dataset (`torch.utils.data.Dataset`): The dataset to be loaded.
|
|
|
|
shuffle (bool, optional): Whether to shuffle the dataset. Defaults to False.
|
|
|
|
seed (int, optional): Random worker seed for sampling, defaults to 1024.
|
|
|
|
add_sampler: Whether to add ``DistributedDataParallelSampler`` to the dataset. Defaults to True.
|
|
|
|
drop_last (bool, optional): Set to True to drop the last incomplete batch, if the dataset size
|
|
|
|
is not divisible by the batch size. If False and the size of dataset is not divisible by
|
|
|
|
the batch size, then the last batch will be smaller, defaults to False.
|
|
|
|
pin_memory (bool, optional): Whether to pin memory address in CPU memory. Defaults to False.
|
|
|
|
num_workers (int, optional): Number of worker threads for this dataloader. Defaults to 0.
|
|
|
|
kwargs (dict): optional parameters for ``torch.utils.data.DataLoader``, more details could be found in
|
|
|
|
`DataLoader <https://pytorch.org/docs/stable/_modules/torch/utils/data/dataloader.html#DataLoader>`_.
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
:class:`torch.utils.data.DataLoader`: A DataLoader used for training or testing.
|
|
|
|
"""
|
|
|
|
_kwargs = kwargs.copy()
|
2024-02-05 07:14:56 +00:00
|
|
|
distributed_sampler_cls = distributed_sampler_cls or DistributedSampler
|
|
|
|
sampler = distributed_sampler_cls(dataset, num_replicas=self.world_size, rank=self.rank, shuffle=shuffle)
|
2023-05-05 11:36:10 +00:00
|
|
|
|
|
|
|
# Deterministic dataloader
|
|
|
|
def seed_worker(worker_id):
|
|
|
|
worker_seed = seed
|
|
|
|
np.random.seed(worker_seed)
|
|
|
|
torch.manual_seed(worker_seed)
|
|
|
|
random.seed(worker_seed)
|
|
|
|
|
2023-09-19 06:20:26 +00:00
|
|
|
return DataLoader(
|
|
|
|
dataset,
|
|
|
|
batch_size=batch_size,
|
|
|
|
sampler=sampler,
|
|
|
|
worker_init_fn=seed_worker,
|
|
|
|
drop_last=drop_last,
|
|
|
|
pin_memory=pin_memory,
|
|
|
|
num_workers=num_workers,
|
|
|
|
**_kwargs,
|
|
|
|
)
|