2024-08-22 10:25:34 +00:00
|
|
|
from copy import deepcopy
|
|
|
|
from typing import Tuple
|
|
|
|
|
|
|
|
import torch
|
|
|
|
import torch.distributed as dist
|
|
|
|
import torch.nn as nn
|
2024-08-23 06:04:12 +00:00
|
|
|
from torch.testing import assert_close
|
2024-08-22 10:25:34 +00:00
|
|
|
|
|
|
|
import colossalai
|
|
|
|
from colossalai.cluster import ProcessGroupMesh
|
|
|
|
from colossalai.pipeline.schedule.zero_bubble_pp import ZeroBubbleVPipeScheduler
|
|
|
|
from colossalai.pipeline.stage_manager import PipelineStageManager
|
|
|
|
from colossalai.testing import rerun_if_address_is_in_use, spawn
|
|
|
|
|
|
|
|
|
|
|
|
class MlpModel(nn.Module):
|
|
|
|
def __init__(self, in_dim, out_dim, num_layers):
|
|
|
|
super().__init__()
|
|
|
|
self.layers = nn.ModuleList([nn.Linear(in_dim, out_dim, bias=None) for _ in range(num_layers)])
|
|
|
|
|
|
|
|
def forward(self, x):
|
|
|
|
for layer in self.layers:
|
|
|
|
x = layer(x)
|
|
|
|
return x
|
|
|
|
|
|
|
|
|
|
|
|
def get_model_numel(model: torch.nn.Module) -> Tuple[int, int]:
|
|
|
|
num_params = 0
|
|
|
|
num_params_trainable = 0
|
|
|
|
for p in model.parameters():
|
|
|
|
num_params += p.numel()
|
|
|
|
if p.requires_grad:
|
|
|
|
num_params_trainable += p.numel()
|
|
|
|
return num_params, num_params_trainable
|
|
|
|
|
|
|
|
|
|
|
|
def test_zerobubble_pipeline_base(
|
|
|
|
rank: int,
|
|
|
|
world_size: int,
|
|
|
|
port: int,
|
|
|
|
):
|
|
|
|
# init dist
|
|
|
|
colossalai.launch(rank=rank, world_size=world_size, port=port, host="localhost")
|
|
|
|
pg_mesh = ProcessGroupMesh(world_size)
|
|
|
|
|
|
|
|
stage_manager = PipelineStageManager(pg_mesh, pipeline_axis=0, enable_interleave=True, num_model_chunks=world_size)
|
|
|
|
|
|
|
|
scheduler = ZeroBubbleVPipeScheduler(
|
|
|
|
schedule=[],
|
|
|
|
stage_manager=stage_manager,
|
|
|
|
num_model_chunks=world_size,
|
|
|
|
num_microbatch=1,
|
|
|
|
overlap_p2p=False,
|
|
|
|
)
|
|
|
|
|
|
|
|
rank = dist.get_rank()
|
|
|
|
|
|
|
|
# init model and input
|
|
|
|
num_layers = 8
|
2024-08-23 06:04:12 +00:00
|
|
|
in_dim = out_dim = 8
|
2024-08-22 10:25:34 +00:00
|
|
|
print(f"Before init Model: {torch.cuda.memory_allocated()/1024**3 :.3f} GB on device {stage_manager.get_rank()};")
|
|
|
|
model = MlpModel(in_dim=in_dim, out_dim=out_dim, num_layers=num_layers).to(rank)
|
|
|
|
input0 = torch.rand(in_dim, out_dim, requires_grad=True).to(rank)
|
|
|
|
|
2024-08-23 06:04:12 +00:00
|
|
|
input_base = input0.clone()
|
|
|
|
model_base = deepcopy(model)
|
2024-08-22 10:25:34 +00:00
|
|
|
|
|
|
|
if rank == 0:
|
|
|
|
# layer 0 & 7 to chunk 0 on rank0
|
|
|
|
chunk_0 = torch.nn.ModuleList().to(rank)
|
|
|
|
for idx, sub_model in enumerate(model.layers):
|
|
|
|
if idx == 0 or idx == 7:
|
|
|
|
chunk_0.append(sub_model)
|
|
|
|
elif rank == 1:
|
|
|
|
# layer 1 & 6 to chunk 1 on rank1
|
|
|
|
chunk_1 = torch.nn.ModuleList().to(rank)
|
|
|
|
for idx, sub_model in enumerate(model.layers):
|
|
|
|
if idx == 1 or idx == 6:
|
|
|
|
chunk_1.append(sub_model)
|
|
|
|
elif rank == 2:
|
|
|
|
# layer 2 & 5 to chunk 2 on rank2
|
|
|
|
chunk_2 = torch.nn.ModuleList().to(rank)
|
|
|
|
for idx, sub_model in enumerate(model.layers):
|
|
|
|
if idx == 2 or idx == 5:
|
|
|
|
chunk_2.append(sub_model)
|
|
|
|
else:
|
|
|
|
# layer 3 & 4 to chunk 3 on rank3
|
|
|
|
chunk_3 = torch.nn.Sequential().to(rank)
|
|
|
|
for idx, sub_model in enumerate(model.layers):
|
|
|
|
if idx == 3 or idx == 4:
|
|
|
|
chunk_3.append(sub_model)
|
|
|
|
print(
|
|
|
|
f"After init Model & input: {torch.cuda.memory_allocated()/1024**3 :.3f} GB on device {stage_manager.get_rank()};"
|
|
|
|
)
|
|
|
|
|
|
|
|
def criterion(x, *args, **kwargs):
|
|
|
|
return (x * x).mean()
|
|
|
|
|
|
|
|
##########################
|
|
|
|
# Step1: fwd
|
|
|
|
##########################
|
|
|
|
######
|
|
|
|
# fwd 1->4
|
|
|
|
######
|
|
|
|
# chunk 0 id 0 (layer 0) fwd
|
|
|
|
if rank == 0:
|
|
|
|
chunk_id = 0
|
|
|
|
scheduler.schedule_f(
|
|
|
|
scheduled_node=None,
|
|
|
|
model_chunk=chunk_0,
|
|
|
|
model_chunk_id=chunk_id,
|
|
|
|
input_obj=input0,
|
|
|
|
criterion=criterion,
|
|
|
|
accum_loss=None,
|
|
|
|
outputs=None,
|
|
|
|
)
|
|
|
|
print(
|
|
|
|
f"chunk 0 id 0 (layer 0)fwd: {torch.cuda.memory_allocated()/1024**3 :.3f} GB on device {stage_manager.get_rank()};"
|
|
|
|
)
|
|
|
|
|
|
|
|
# chunk 1 id 0 (layer 1) fwd
|
|
|
|
if rank == 1:
|
|
|
|
chunk_id = 0
|
|
|
|
scheduler.schedule_f(
|
|
|
|
scheduled_node=None,
|
|
|
|
model_chunk=chunk_1,
|
|
|
|
model_chunk_id=chunk_id,
|
|
|
|
input_obj=None,
|
|
|
|
criterion=criterion,
|
|
|
|
accum_loss=None,
|
|
|
|
outputs=None,
|
|
|
|
)
|
|
|
|
print(
|
|
|
|
f"chunk 1 id 0 (layer 1)fwd: {torch.cuda.memory_allocated()/1024**3 :.3f} GB on device {stage_manager.get_rank()};"
|
|
|
|
)
|
|
|
|
|
|
|
|
# chunk 2 id 0 (layer 2) fwd
|
|
|
|
if rank == 2:
|
|
|
|
chunk_id = 0
|
|
|
|
scheduler.schedule_f(
|
|
|
|
scheduled_node=None,
|
|
|
|
model_chunk=chunk_2,
|
|
|
|
model_chunk_id=chunk_id,
|
|
|
|
input_obj=None,
|
|
|
|
criterion=criterion,
|
|
|
|
accum_loss=None,
|
|
|
|
outputs=None,
|
|
|
|
)
|
|
|
|
print(
|
|
|
|
f"chunk 2 id 0 (layer 2)fwd: {torch.cuda.memory_allocated()/1024**3 :.3f} GB on device {stage_manager.get_rank()};"
|
|
|
|
)
|
|
|
|
|
|
|
|
# chunk 3 id 0 (layer 3) fwd
|
|
|
|
if rank == 3:
|
|
|
|
chunk_id = 0
|
|
|
|
scheduler.schedule_f(
|
|
|
|
scheduled_node=None,
|
|
|
|
model_chunk=chunk_3,
|
|
|
|
model_chunk_id=chunk_id,
|
|
|
|
input_obj=None,
|
|
|
|
criterion=criterion,
|
|
|
|
accum_loss=None,
|
|
|
|
outputs=None,
|
|
|
|
)
|
|
|
|
print(
|
|
|
|
f"chunk 3 id 0 (layer 3)fwd: {torch.cuda.memory_allocated()/1024**3 :.3f} GB on device {stage_manager.get_rank()};"
|
|
|
|
)
|
|
|
|
|
|
|
|
######
|
|
|
|
# fwd 4->1
|
|
|
|
######
|
|
|
|
|
|
|
|
if rank == 3:
|
|
|
|
chunk_id = 1
|
|
|
|
scheduler.schedule_f(
|
|
|
|
scheduled_node=None,
|
|
|
|
model_chunk=chunk_3,
|
|
|
|
model_chunk_id=chunk_id,
|
|
|
|
input_obj=None,
|
|
|
|
criterion=criterion,
|
|
|
|
accum_loss=None,
|
|
|
|
outputs=None,
|
|
|
|
)
|
|
|
|
print(
|
|
|
|
f"chunk 3 id 1 (layer 4)fwd: {torch.cuda.memory_allocated()/1024**3 :.3f} GB on device {stage_manager.get_rank()};"
|
|
|
|
)
|
|
|
|
|
|
|
|
if rank == 2:
|
|
|
|
chunk_id = 1
|
|
|
|
scheduler.schedule_f(
|
|
|
|
scheduled_node=None,
|
|
|
|
model_chunk=chunk_2,
|
|
|
|
model_chunk_id=chunk_id,
|
|
|
|
input_obj=None,
|
|
|
|
criterion=criterion,
|
|
|
|
accum_loss=None,
|
|
|
|
outputs=None,
|
|
|
|
)
|
|
|
|
print(
|
|
|
|
f"chunk 2 id 1 (layer 5)fwd: {torch.cuda.memory_allocated()/1024**3 :.3f} GB on device {stage_manager.get_rank()};"
|
|
|
|
)
|
|
|
|
|
|
|
|
if rank == 1:
|
|
|
|
chunk_id = 1
|
|
|
|
scheduler.schedule_f(
|
|
|
|
scheduled_node=None,
|
|
|
|
model_chunk=chunk_1,
|
|
|
|
model_chunk_id=chunk_id,
|
|
|
|
input_obj=None,
|
|
|
|
criterion=criterion,
|
|
|
|
accum_loss=None,
|
|
|
|
outputs=None,
|
|
|
|
)
|
|
|
|
print(
|
|
|
|
f"chunk 1 id 1 (layer 6)fwd: {torch.cuda.memory_allocated()/1024**3 :.3f} GB on device {stage_manager.get_rank()};"
|
|
|
|
)
|
|
|
|
|
|
|
|
if rank == 0:
|
|
|
|
chunk_id = 1
|
|
|
|
scheduler.schedule_f(
|
|
|
|
scheduled_node=None,
|
|
|
|
model_chunk=chunk_0,
|
|
|
|
model_chunk_id=chunk_id,
|
|
|
|
input_obj=None,
|
|
|
|
criterion=criterion,
|
|
|
|
accum_loss=None,
|
|
|
|
outputs=None,
|
|
|
|
)
|
|
|
|
# print(f"fwd output {output7}")
|
|
|
|
print(
|
|
|
|
f"chunk 0 id 1 (layer 7)fwd: {torch.cuda.memory_allocated()/1024**3 :.3f} GB on device {stage_manager.get_rank()};"
|
|
|
|
)
|
|
|
|
|
|
|
|
##########################
|
|
|
|
# Step2: bwd
|
|
|
|
##########################
|
|
|
|
######
|
|
|
|
# bwd rank 4->1
|
|
|
|
######
|
|
|
|
# chunk 0 id 1 (layer 7) bwd
|
|
|
|
if rank == 0:
|
|
|
|
chunk_id = 1
|
|
|
|
scheduler.schedule_b(
|
|
|
|
scheduled_node=None,
|
|
|
|
model_chunk=chunk_0,
|
|
|
|
model_chunk_id=chunk_id,
|
|
|
|
# optimizer: OptimizerWrapper,
|
|
|
|
)
|
2024-08-23 06:04:12 +00:00
|
|
|
scheduler.schedule_w(
|
|
|
|
scheduled_node=None,
|
|
|
|
non_w_pending=None,
|
|
|
|
model_chunk=chunk_0,
|
|
|
|
model_chunk_id=chunk_id,
|
|
|
|
# optimizer: OptimizerWrapper,
|
|
|
|
)
|
2024-08-22 10:25:34 +00:00
|
|
|
|
|
|
|
# # chunk 1 id 1 (layer 6) bwd
|
|
|
|
if rank == 1:
|
|
|
|
chunk_id = 1
|
|
|
|
scheduler.schedule_b(
|
|
|
|
scheduled_node=None,
|
|
|
|
model_chunk=chunk_1,
|
|
|
|
model_chunk_id=chunk_id,
|
|
|
|
# optimizer: OptimizerWrapper,
|
|
|
|
)
|
2024-08-23 06:04:12 +00:00
|
|
|
scheduler.schedule_w(
|
|
|
|
scheduled_node=None,
|
|
|
|
non_w_pending=None,
|
|
|
|
model_chunk=chunk_1,
|
|
|
|
model_chunk_id=chunk_id,
|
|
|
|
# optimizer: OptimizerWrapper,
|
|
|
|
)
|
2024-08-22 10:25:34 +00:00
|
|
|
|
|
|
|
# chunk 2 id 1 (layer 5) bwd
|
|
|
|
if rank == 2:
|
|
|
|
chunk_id = 1
|
|
|
|
scheduler.schedule_b(
|
|
|
|
scheduled_node=None,
|
|
|
|
model_chunk=chunk_2,
|
|
|
|
model_chunk_id=chunk_id,
|
|
|
|
# optimizer: OptimizerWrapper,
|
|
|
|
)
|
|
|
|
|
2024-08-23 06:04:12 +00:00
|
|
|
scheduler.schedule_w(
|
|
|
|
scheduled_node=None,
|
|
|
|
non_w_pending=None,
|
|
|
|
model_chunk=chunk_2,
|
|
|
|
model_chunk_id=chunk_id,
|
|
|
|
# optimizer: OptimizerWrapper,
|
|
|
|
)
|
|
|
|
|
2024-08-22 10:25:34 +00:00
|
|
|
# chunk 3 id 1 (layer 4) bwd
|
|
|
|
if rank == 3:
|
|
|
|
chunk_id = 1
|
|
|
|
scheduler.schedule_b(
|
|
|
|
scheduled_node=None,
|
|
|
|
model_chunk=chunk_3,
|
|
|
|
model_chunk_id=chunk_id,
|
|
|
|
# optimizer: OptimizerWrapper,
|
|
|
|
)
|
|
|
|
|
2024-08-23 06:04:12 +00:00
|
|
|
scheduler.schedule_w(
|
|
|
|
scheduled_node=None,
|
|
|
|
non_w_pending=None,
|
|
|
|
model_chunk=chunk_3,
|
|
|
|
model_chunk_id=chunk_id,
|
|
|
|
# optimizer: OptimizerWrapper,
|
|
|
|
)
|
|
|
|
|
2024-08-22 10:25:34 +00:00
|
|
|
# ######
|
|
|
|
# # bwd rank 1->4
|
|
|
|
# ######
|
|
|
|
|
|
|
|
# chunk 3 id 0 (layer 3) bwd
|
|
|
|
if rank == 3:
|
|
|
|
chunk_id = 0
|
|
|
|
scheduler.schedule_b(
|
|
|
|
scheduled_node=None,
|
|
|
|
model_chunk=chunk_3,
|
|
|
|
model_chunk_id=chunk_id,
|
|
|
|
# optimizer: OptimizerWrapper,
|
|
|
|
)
|
|
|
|
# print(f"input_grad3 {input_grad3}")
|
2024-08-23 06:04:12 +00:00
|
|
|
scheduler.schedule_w(
|
|
|
|
scheduled_node=None,
|
|
|
|
non_w_pending=None,
|
|
|
|
model_chunk=chunk_3,
|
|
|
|
model_chunk_id=chunk_id,
|
|
|
|
# optimizer: OptimizerWrapper,
|
|
|
|
)
|
2024-08-22 10:25:34 +00:00
|
|
|
|
|
|
|
# chunk 2 id 0 (layer 2) bwd
|
|
|
|
if rank == 2:
|
|
|
|
chunk_id = 0
|
|
|
|
scheduler.schedule_b(
|
|
|
|
scheduled_node=None,
|
|
|
|
model_chunk=chunk_2,
|
|
|
|
model_chunk_id=chunk_id,
|
|
|
|
# optimizer: OptimizerWrapper,
|
|
|
|
)
|
|
|
|
# print(f"input_grad2 {input_grad2}")
|
2024-08-23 06:04:12 +00:00
|
|
|
scheduler.schedule_w(
|
|
|
|
scheduled_node=None,
|
|
|
|
non_w_pending=None,
|
|
|
|
model_chunk=chunk_2,
|
|
|
|
model_chunk_id=chunk_id,
|
|
|
|
# optimizer: OptimizerWrapper,
|
|
|
|
)
|
2024-08-22 10:25:34 +00:00
|
|
|
|
|
|
|
# chunk 1 id 0 (layer 1) bwd
|
|
|
|
if rank == 1:
|
|
|
|
chunk_id = 0
|
|
|
|
scheduler.schedule_b(
|
|
|
|
scheduled_node=None,
|
|
|
|
model_chunk=chunk_1,
|
|
|
|
model_chunk_id=chunk_id,
|
|
|
|
# optimizer: OptimizerWrapper,
|
|
|
|
)
|
|
|
|
|
2024-08-23 06:04:12 +00:00
|
|
|
scheduler.schedule_w(
|
|
|
|
scheduled_node=None,
|
|
|
|
non_w_pending=None,
|
|
|
|
model_chunk=chunk_1,
|
|
|
|
model_chunk_id=chunk_id,
|
|
|
|
# optimizer: OptimizerWrapper,
|
|
|
|
)
|
|
|
|
|
2024-08-22 10:25:34 +00:00
|
|
|
# chunk 0 id 0 (layer 0) bwd
|
|
|
|
if rank == 0:
|
|
|
|
chunk_id = 0
|
|
|
|
scheduler.schedule_b(
|
|
|
|
scheduled_node=None,
|
|
|
|
model_chunk=chunk_0,
|
|
|
|
model_chunk_id=chunk_id,
|
|
|
|
# optimizer: OptimizerWrapper,
|
|
|
|
)
|
|
|
|
# print(f"input_grad0 {input_grad0}")
|
|
|
|
|
2024-08-23 06:04:12 +00:00
|
|
|
scheduler.schedule_w(
|
|
|
|
scheduled_node=None,
|
|
|
|
non_w_pending=None,
|
|
|
|
model_chunk=chunk_0,
|
|
|
|
model_chunk_id=chunk_id,
|
|
|
|
# optimizer: OptimizerWrapper,
|
|
|
|
)
|
|
|
|
|
|
|
|
##########################
|
|
|
|
# Fwd bwd for base
|
|
|
|
##########################
|
|
|
|
# fwd & bwd
|
|
|
|
output_base = model_base(input_base)
|
|
|
|
loss_base = output_base.mean()
|
|
|
|
loss_base.backward()
|
|
|
|
print(f"After base fwd & bwd: {torch.cuda.memory_allocated()/1024**3 :.3f} GB;")
|
|
|
|
|
|
|
|
# assert weight
|
|
|
|
if rank == 0:
|
|
|
|
# layer 0
|
|
|
|
assert_close(chunk_0[0].weight, model_base.layers[0].weight)
|
|
|
|
assert_close(chunk_0[0].weight.grad, model_base.layers[0].weight.grad)
|
|
|
|
# layer 7
|
|
|
|
assert_close(chunk_0[1].weight, model_base.layers[7].weight)
|
|
|
|
assert_close(chunk_0[1].weight.grad, model_base.layers[7].weight.grad)
|
|
|
|
if rank == 1:
|
|
|
|
# layer 1
|
|
|
|
assert_close(chunk_1[0].weight, model_base.layers[1].weight)
|
|
|
|
assert_close(chunk_1[0].weight.grad, model_base.layers[1].weight.grad)
|
|
|
|
# layer 6
|
|
|
|
assert_close(chunk_1[1].weight, model_base.layers[6].weight)
|
|
|
|
assert_close(chunk_1[1].weight.grad, model_base.layers[6].weight.grad)
|
|
|
|
|
|
|
|
if rank == 2:
|
|
|
|
# layer 2
|
|
|
|
assert_close(chunk_2[0].weight, model_base.layers[2].weight)
|
|
|
|
assert_close(chunk_2[0].weight.grad, model_base.layers[2].weight.grad)
|
|
|
|
# layer 5
|
|
|
|
assert_close(chunk_2[1].weight, model_base.layers[5].weight)
|
|
|
|
assert_close(chunk_2[1].weight.grad, model_base.layers[5].weight.grad)
|
|
|
|
|
|
|
|
if rank == 3:
|
|
|
|
# layer 3
|
|
|
|
assert_close(chunk_3[0].weight, model_base.layers[3].weight)
|
|
|
|
assert_close(chunk_3[0].weight.grad, model_base.layers[3].weight.grad)
|
|
|
|
# layer 4
|
|
|
|
assert_close(chunk_3[1].weight, model_base.layers[4].weight)
|
|
|
|
assert_close(chunk_3[1].weight.grad, model_base.layers[4].weight.grad)
|
|
|
|
|
2024-08-22 10:25:34 +00:00
|
|
|
|
|
|
|
# @pytest.mark.dist
|
|
|
|
# @pytest.mark.parametrize("num_microbatch", [4])
|
|
|
|
# @pytest.mark.parametrize("batch_size", [4])
|
|
|
|
# @pytest.mark.parametrize("num_model_chunk", [2])
|
|
|
|
@rerun_if_address_is_in_use()
|
|
|
|
def test_pp():
|
|
|
|
spawn(
|
|
|
|
test_zerobubble_pipeline_base,
|
|
|
|
nprocs=4,
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == "__main__":
|
|
|
|
|
|
|
|
test_pp()
|