You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
ColossalAI/colossalai/_analyzer/fx/node_util.py

212 lines
8.3 KiB

from dataclasses import dataclass, field
from typing import Callable, ClassVar, Dict, List, Optional, Tuple, Union
import torch
from torch.autograd.profiler_util import _format_memory, _format_time
from torch.fx import Graph, GraphModule, Node
from colossalai._analyzer.envs import MeshConfig
def intersect(a, b):
return {k: a[k] for k in a if k in b}
def subtract(a, b):
return {k: a[k] for k in a if k not in b}
def union(a, b):
return {**a, **b}
def compute_size_in_bytes(elem: Union[torch.Tensor, Dict, List, Tuple, int]) -> int:
"""Compute the size of a tensor or a collection of tensors in bytes.
Args:
elem (torch.Tensor | Dict | List | Tuple | int): Arbitrary nested ``torch.Tensor`` data structure.
Returns:
int: The size of the tensor or the collection of tensors in bytes.
"""
nbytes = 0
if isinstance(elem, torch.Tensor):
if elem.is_quantized:
nbytes += elem.numel() * torch._empty_affine_quantized([], dtype=elem.dtype).element_size()
else:
nbytes += elem.numel() * torch.tensor([], dtype=elem.dtype).element_size()
elif isinstance(elem, dict):
value_list = [v for _, v in elem.items()]
nbytes += compute_size_in_bytes(value_list)
elif isinstance(elem, tuple) or isinstance(elem, list) or isinstance(elem, set):
for e in elem:
nbytes += compute_size_in_bytes(e)
return nbytes
@dataclass
class MetaInfo:
r"""
The base class to store all profiling and static graph analysis information
needed for auto-parallel system in Colossal-AI.
============================================================================
-------------------------------
| FX.Node | <-----
[input/param] are ---> |[input/param] [grad_inp]| [grad_inp] contributes to the
placeholders (might be | | \__________ | | profiled peak memory in backward
saved for backward. | | \ | | pass. [grad_param] is calculated
| | \ | | separately.
| [interm] -------> [grad_int]| <-----
| | \_________ | | [grad_interm] marks the peak
| / \ \ | | memory in backward pass.
[x] is not counted ---> | [x] [interm] --> [grad_int]| <-----
in [interm] because | | \_____ | |
it is not saved for | | \ | |
backward. | [output] \ | | <----- [output] is potentially
------------------------------- [input] for the next node.
============================================================================
Accumulate Size = ALL_PREVIOUS_CTX U {Interm Size + Output Size}
Output Size = ([output] in global_ctx and not is_alias)
Temp Size = ([output] not in global_ctx and not is_alias)
Backward Size = ([grad_inp])
Usage:
>>> for node in graph.nodes:
>>> n_info = MetaInfo(node) # will create a new MetaInfo instance and store in node.meta['info']
>>> # if not exist, otherwise return the existing one
>>> n_info.to_recompute = ... # set the to_recompute attribute
Remarks:
This feature is experimental and all the entries are subject to change.
"""
# reference
node: Node
# directory
mod_dir: str = ''
# ctx[data_ptr] = Tensor
# mark the storage for ctx.save_for_backward
global_ctx: Dict[str, torch.Tensor] = field(default_factory=lambda: {}) # globally shared
curr_ctx: Dict[str, torch.Tensor] = field(default_factory=lambda: {}) # global_ctx till this node
# should be updated after each graph manipulation
# ============================== Update ====================================
# parameter and buffer within ``Node``
parameters: Dict[str, torch.nn.Parameter] = field(default_factory=lambda: {})
buffers: Dict[str, torch.Tensor] = field(default_factory=lambda: {})
inputs: Tuple[torch.Tensor] = ()
outputs: Tuple[torch.Tensor] = ()
is_alias: Tuple[bool] = () # whether the output is an alias of input
# compute cost
fwd_flop: Optional[int] = 0
bwd_flop: Optional[int] = 0
# communication cost (should be the size in bytes of communication)
fwd_comm: Optional[int] = 0
bwd_comm: Optional[int] = 0
# should keep the same whenever manipulated
# ============================= Invariant ==================================
activation_checkpoint: Tuple[torch.Tensor] = () # (region_0, region_1, ...) support nested codegen
to_offload: Optional[bool] = False
sharding_spec: str = 'RR'
def __new__(cls, node: Node, **kwargs):
orig_init = cls.__init__
# if initialized, return the existing one
# should disable the __init__ function
if node.meta.get('info', None) is not None:
def _dummy(self, *args, **kwargs):
if getattr(self, '_is_init', False):
self._is_init = True
orig_init(self, *args, **kwargs)
cls.__init__ = orig_init
cls.__init__ = _dummy
return node.meta['info']
return super().__new__(cls)
def __post_init__(self):
self.node.meta['info'] = self
@property
def fwd_time(self, tflops: float = MeshConfig.TFLOPS, bandwidth: float = MeshConfig.BANDWIDTH):
return self.fwd_flop / tflops + self.fwd_comm / bandwidth
@property
def bwd_time(self, tflops: float = MeshConfig.TFLOPS, bandwidth: float = MeshConfig.BANDWIDTH):
return self.bwd_flop / tflops + self.bwd_comm / bandwidth
@property
def param_size(self):
return compute_size_in_bytes(self.parameters)
@property
def buffer_size(self):
return compute_size_in_bytes(self.buffers)
@property
def output_size(self):
"""Used in CheckpointSolver"""
output_ctx = {
o.data_ptr(): o
for o, is_alias in zip(self.outputs, self.is_alias)
if not is_alias and isinstance(o, torch.Tensor) and not isinstance(o, torch.nn.Parameter)
}
return compute_size_in_bytes(intersect(self.global_ctx, output_ctx))
@property
def accumulate_size(self):
"""Used in CheckpointSolver"""
output_ctx = {
o.data_ptr(): o
for o, is_alias in zip(self.outputs, self.is_alias)
if not is_alias and isinstance(o, torch.Tensor) and not isinstance(o, torch.nn.Parameter)
}
return compute_size_in_bytes(union(self.curr_ctx, intersect(self.global_ctx, output_ctx)))
@property
def temp_size(self):
"""Used in CheckpointSolver"""
output_ctx = {
o.data_ptr(): o
for o, is_alias in zip(self.outputs, self.is_alias)
if not is_alias and isinstance(o, torch.Tensor) and not isinstance(o, torch.nn.Parameter)
}
return compute_size_in_bytes(subtract(output_ctx, self.global_ctx))
@property
def backward_size(self):
"""Used in CheckpointSolver"""
return compute_size_in_bytes(self.inputs)
def __repr__(self):
s = f'Node {self.node.name}'
if self.parameters:
s += f'\n\thas parameter of size {_format_memory(self.param_size)}'
if self.buffers:
s += f'\n\thas buffer of size {_format_memory(self.buffer_size)}'
if self.output_size:
s += f'\n\thas output activation of size {_format_memory(self.output_size)}'
# if self.total_size:
# s += f'\n\thas total activation of size {_format_memory(self.total_size)}'
if self.temp_size:
s += f'\n\thas temp activation of size {_format_memory(self.temp_size)}'
if self.backward_size:
s += f'\n\thas backward activation of size {_format_memory(self.backward_size)}'
s += f'\n\tfwd_flop = {self.fwd_flop}'\
f'\n\tbwd_flop = {self.bwd_flop}'\
f'\n\tfwd_comm = {self.fwd_comm}'\
f'\n\tbwd_comm = {self.bwd_comm}'\
f'\n\tto_recompute = {self.to_recompute}'\
f'\n\tto_offload = {self.to_offload}'\
f'\n\tsharding_spec = {self.sharding_spec}'
return s