|
|
|
import torch
|
|
|
|
|
|
|
|
from colossalai.kernel.triton import get_xine_cache
|
|
|
|
from tests.test_infer.test_kernels.triton.test_xine_copy import get_cos_sin
|
|
|
|
|
|
|
|
try:
|
|
|
|
import triton # noqa
|
|
|
|
|
|
|
|
except ImportError:
|
|
|
|
print("please install triton from https://github.com/openai/triton")
|
|
|
|
|
|
|
|
|
|
|
|
configs = [
|
|
|
|
triton.testing.Benchmark(
|
|
|
|
x_names=["max_num_tokens"],
|
|
|
|
x_vals=[2**i for i in range(6, 12)],
|
|
|
|
line_arg="provider",
|
|
|
|
line_vals=["torch_get_cos_sin", "triton_get_cos_sin"],
|
|
|
|
line_names=["torch_get_cos_sin", "triton_get_cos_sin"],
|
|
|
|
styles=[("red", "-"), ("blue", "-")],
|
|
|
|
ylabel="ms",
|
|
|
|
plot_name="Get_cos-sin_func",
|
|
|
|
args={"batch_size": 16, "head_dim": 256},
|
|
|
|
)
|
|
|
|
]
|
|
|
|
|
|
|
|
|
|
|
|
@triton.testing.perf_report(configs)
|
|
|
|
def benchmark_get_xine_cache(
|
|
|
|
provider: str,
|
|
|
|
max_num_tokens: int,
|
|
|
|
batch_size: int,
|
|
|
|
head_dim: int,
|
|
|
|
):
|
|
|
|
warmup = 10
|
|
|
|
rep = 1000
|
|
|
|
dtype = torch.float16
|
|
|
|
cos_cache = torch.randn((8912, head_dim), dtype=dtype, device="cuda")
|
|
|
|
sin_cache = torch.randn((8912, head_dim), dtype=dtype, device="cuda")
|
|
|
|
lengths = torch.randint(2, max_num_tokens, (batch_size,), device="cuda")
|
|
|
|
|
|
|
|
if provider == "torch_get_cos_sin":
|
|
|
|
fn = lambda: get_cos_sin(lengths, cos_cache, sin_cache, is_prompts=True, dtype=dtype)
|
|
|
|
elif provider == "triton_get_cos_sin":
|
|
|
|
fn = lambda: get_xine_cache(lengths, cos_cache, sin_cache, is_prompts=True)
|
|
|
|
else:
|
|
|
|
raise ValueError("Undefined provider")
|
|
|
|
|
|
|
|
ms = triton.testing.do_bench(fn, warmup=warmup, rep=rep)
|
|
|
|
return ms
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == "__main__":
|
|
|
|
benchmark_get_xine_cache.run(save_path=".", print_data=True)
|