ColossalAI/tests/test_legacy/test_engine/test_engine.py

68 lines
2.1 KiB
Python
Raw Normal View History

import pytest
import torch
import colossalai
from colossalai.legacy.amp import AMP_TYPE
from colossalai.legacy.core import global_context as gpc
from colossalai.testing import DummyDataloader, parameterize, rerun_if_address_is_in_use, spawn
from tests.kit.model_zoo import model_zoo
CONFIG = dict(
parallel=dict(pipeline=dict(size=1), tensor=dict(size=1, mode=None)), fp16=dict(mode=None), clip_grad_norm=1.0
)
@parameterize("model_name", ["repeated_computed_layers", "resnet18", "repeated_computed_layers"])
@parameterize("amp_mode", [AMP_TYPE.APEX, AMP_TYPE.TORCH, AMP_TYPE.NAIVE, None])
def run_train(model_name, amp_mode):
2022-03-09 06:18:23 +00:00
# FIXME: test bert
model_builder, data_gen_fn, *_ = next(iter(model_zoo.get_sub_registry(model_name).values()))
train_dataloader = DummyDataloader(data_gen_fn)
criterion = lambda x: x.sum()
gpc.config.fp16["mode"] = amp_mode
model = model_builder()
engine, train_dataloader, *args = colossalai.legacy.initialize(
model=model,
optimizer=torch.optim.Adam(model.parameters(), lr=1e-3),
criterion=criterion,
train_dataloader=train_dataloader,
)
try:
engine.train()
for data in train_dataloader:
engine.zero_grad()
data = {k: v.cuda() if isinstance(v, torch.Tensor) else v for k, v in data.items()}
if criterion:
output = engine(**data)
loss = engine.criterion(output)
else:
loss = engine(**data)
engine.backward(loss)
engine.step()
break
except IndexError:
# if using apex amp, NetWithRepeatedlyComputedLayers will raise an index out of range issue
# the following check fails in apex
# if cached_x.grad_fn.next_functions[1][0].variable is not x:
pass
def run_engine(rank, world_size, port):
# init dist env
colossalai.legacy.launch(
config=CONFIG, rank=rank, world_size=world_size, host="localhost", port=port, backend="nccl"
)
run_train()
@pytest.mark.dist
@rerun_if_address_is_in_use()
def test_engine():
spawn(run_engine, 2)
if __name__ == "__main__":
test_engine()