2023-04-06 06:51:35 +00:00
|
|
|
import pytest
|
2023-10-20 02:35:08 +00:00
|
|
|
import torch
|
2022-03-08 02:19:18 +00:00
|
|
|
|
|
|
|
import colossalai
|
2023-09-18 08:31:06 +00:00
|
|
|
from colossalai.legacy.amp import AMP_TYPE
|
|
|
|
from colossalai.legacy.core import global_context as gpc
|
2023-10-20 02:35:08 +00:00
|
|
|
from colossalai.testing import DummyDataloader, parameterize, rerun_if_address_is_in_use, spawn
|
|
|
|
from tests.kit.model_zoo import model_zoo
|
2022-03-08 02:19:18 +00:00
|
|
|
|
2023-09-19 06:20:26 +00:00
|
|
|
CONFIG = dict(
|
|
|
|
parallel=dict(pipeline=dict(size=1), tensor=dict(size=1, mode=None)), fp16=dict(mode=None), clip_grad_norm=1.0
|
|
|
|
)
|
2022-03-08 02:19:18 +00:00
|
|
|
|
|
|
|
|
2023-09-19 06:20:26 +00:00
|
|
|
@parameterize("model_name", ["repeated_computed_layers", "resnet18", "repeated_computed_layers"])
|
|
|
|
@parameterize("amp_mode", [AMP_TYPE.APEX, AMP_TYPE.TORCH, AMP_TYPE.NAIVE, None])
|
2022-03-17 07:44:17 +00:00
|
|
|
def run_train(model_name, amp_mode):
|
2022-03-09 06:18:23 +00:00
|
|
|
# FIXME: test bert
|
2023-10-20 02:35:08 +00:00
|
|
|
model_builder, data_gen_fn, *_ = next(iter(model_zoo.get_sub_registry(model_name).values()))
|
|
|
|
train_dataloader = DummyDataloader(data_gen_fn)
|
|
|
|
criterion = lambda x: x.sum()
|
2023-09-19 06:20:26 +00:00
|
|
|
gpc.config.fp16["mode"] = amp_mode
|
2022-03-17 07:44:17 +00:00
|
|
|
|
2023-10-20 02:35:08 +00:00
|
|
|
model = model_builder()
|
2023-09-19 06:20:26 +00:00
|
|
|
engine, train_dataloader, *args = colossalai.legacy.initialize(
|
|
|
|
model=model,
|
2023-10-20 02:35:08 +00:00
|
|
|
optimizer=torch.optim.Adam(model.parameters(), lr=1e-3),
|
2023-09-19 06:20:26 +00:00
|
|
|
criterion=criterion,
|
|
|
|
train_dataloader=train_dataloader,
|
|
|
|
)
|
2022-03-17 07:44:17 +00:00
|
|
|
|
|
|
|
try:
|
|
|
|
engine.train()
|
2023-10-20 02:35:08 +00:00
|
|
|
for data in train_dataloader:
|
2022-03-17 07:44:17 +00:00
|
|
|
engine.zero_grad()
|
2023-10-20 02:35:08 +00:00
|
|
|
data = {k: v.cuda() if isinstance(v, torch.Tensor) else v for k, v in data.items()}
|
2022-03-17 07:44:17 +00:00
|
|
|
if criterion:
|
2023-10-20 02:35:08 +00:00
|
|
|
output = engine(**data)
|
|
|
|
loss = engine.criterion(output)
|
2022-03-17 07:44:17 +00:00
|
|
|
else:
|
2023-10-20 02:35:08 +00:00
|
|
|
loss = engine(**data)
|
2022-03-17 07:44:17 +00:00
|
|
|
engine.backward(loss)
|
|
|
|
engine.step()
|
|
|
|
break
|
|
|
|
except IndexError:
|
|
|
|
# if using apex amp, NetWithRepeatedlyComputedLayers will raise an index out of range issue
|
|
|
|
# the following check fails in apex
|
|
|
|
# if cached_x.grad_fn.next_functions[1][0].variable is not x:
|
|
|
|
pass
|
2022-03-08 02:19:18 +00:00
|
|
|
|
|
|
|
|
|
|
|
def run_engine(rank, world_size, port):
|
|
|
|
# init dist env
|
2023-09-19 06:20:26 +00:00
|
|
|
colossalai.legacy.launch(
|
|
|
|
config=CONFIG, rank=rank, world_size=world_size, host="localhost", port=port, backend="nccl"
|
|
|
|
)
|
2022-03-17 07:44:17 +00:00
|
|
|
run_train()
|
2022-03-08 02:19:18 +00:00
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.dist
|
2022-04-14 16:33:04 +00:00
|
|
|
@rerun_if_address_is_in_use()
|
2022-03-08 02:19:18 +00:00
|
|
|
def test_engine():
|
2023-04-06 06:51:35 +00:00
|
|
|
spawn(run_engine, 2)
|
2022-03-08 02:19:18 +00:00
|
|
|
|
|
|
|
|
2023-09-19 06:20:26 +00:00
|
|
|
if __name__ == "__main__":
|
2022-03-08 02:19:18 +00:00
|
|
|
test_engine()
|