mirror of https://github.com/hpcaitech/ColossalAI
145 lines
5.3 KiB
Python
145 lines
5.3 KiB
Python
|
import copy
|
||
|
import csv
|
||
|
import os
|
||
|
from typing import Dict, List
|
||
|
|
||
|
from colossalai.logging import DistributedLogger
|
||
|
|
||
|
from .base import BaseDataset
|
||
|
|
||
|
cmmlu_subject_mapping = {
|
||
|
"agronomy": "农学",
|
||
|
"anatomy": "解剖学",
|
||
|
"ancient_chinese": "古汉语",
|
||
|
"arts": "艺术学",
|
||
|
"astronomy": "天文学",
|
||
|
"business_ethics": "商业伦理",
|
||
|
"chinese_civil_service_exam": "中国公务员考试",
|
||
|
"chinese_driving_rule": "中国驾驶规则",
|
||
|
"chinese_food_culture": "中国饮食文化",
|
||
|
"chinese_foreign_policy": "中国外交政策",
|
||
|
"chinese_history": "中国历史",
|
||
|
"chinese_literature": "中国文学",
|
||
|
"chinese_teacher_qualification": "中国教师资格",
|
||
|
"clinical_knowledge": "临床知识",
|
||
|
"college_actuarial_science": "大学精算学",
|
||
|
"college_education": "大学教育学",
|
||
|
"college_engineering_hydrology": "大学工程水文学",
|
||
|
"college_law": "大学法律",
|
||
|
"college_mathematics": "大学数学",
|
||
|
"college_medical_statistics": "大学医学统计",
|
||
|
"college_medicine": "大学医学",
|
||
|
"computer_science": "计算机科学",
|
||
|
"computer_security": "计算机安全",
|
||
|
"conceptual_physics": "概念物理学",
|
||
|
"construction_project_management": "建设工程管理",
|
||
|
"economics": "经济学",
|
||
|
"education": "教育学",
|
||
|
"electrical_engineering": "电气工程",
|
||
|
"elementary_chinese": "小学语文",
|
||
|
"elementary_commonsense": "小学常识",
|
||
|
"elementary_information_and_technology": "小学信息技术",
|
||
|
"elementary_mathematics": "初等数学",
|
||
|
"ethnology": "民族学",
|
||
|
"food_science": "食品科学",
|
||
|
"genetics": "遗传学",
|
||
|
"global_facts": "全球事实",
|
||
|
"high_school_biology": "高中生物",
|
||
|
"high_school_chemistry": "高中化学",
|
||
|
"high_school_geography": "高中地理",
|
||
|
"high_school_mathematics": "高中数学",
|
||
|
"high_school_physics": "高中物理学",
|
||
|
"high_school_politics": "高中政治",
|
||
|
"human_sexuality": "人类性行为",
|
||
|
"international_law": "国际法学",
|
||
|
"journalism": "新闻学",
|
||
|
"jurisprudence": "法理学",
|
||
|
"legal_and_moral_basis": "法律与道德基础",
|
||
|
"logical": "逻辑学",
|
||
|
"machine_learning": "机器学习",
|
||
|
"management": "管理学",
|
||
|
"marketing": "市场营销",
|
||
|
"marxist_theory": "马克思主义理论",
|
||
|
"modern_chinese": "现代汉语",
|
||
|
"nutrition": "营养学",
|
||
|
"philosophy": "哲学",
|
||
|
"professional_accounting": "专业会计",
|
||
|
"professional_law": "专业法学",
|
||
|
"professional_medicine": "专业医学",
|
||
|
"professional_psychology": "专业心理学",
|
||
|
"public_relations": "公共关系",
|
||
|
"security_study": "安全研究",
|
||
|
"sociology": "社会学",
|
||
|
"sports_science": "体育学",
|
||
|
"traditional_chinese_medicine": "中医中药",
|
||
|
"virology": "病毒学",
|
||
|
"world_history": "世界历史",
|
||
|
"world_religions": "世界宗教",
|
||
|
}
|
||
|
|
||
|
default_inference_kwargs = {
|
||
|
"calculate_loss": True,
|
||
|
"all_classes": ["A", "B", "C", "D"],
|
||
|
"language": "Chinese",
|
||
|
"pretrain": False,
|
||
|
"max_new_tokens": 32,
|
||
|
}
|
||
|
|
||
|
|
||
|
def get_few_shot_data(data: List[Dict]):
|
||
|
few_shot_data = []
|
||
|
for i in data:
|
||
|
few_shot_data.append(i["input"] + i["target"])
|
||
|
return few_shot_data
|
||
|
|
||
|
|
||
|
class CMMLUDataset(BaseDataset):
|
||
|
"""
|
||
|
Dataset class for CMMLU dataset.
|
||
|
Data source: https://github.com/haonan-li/CMMLU/tree/master/data
|
||
|
This dataset class will convert the original dataset into the inference dataset.
|
||
|
"""
|
||
|
|
||
|
@staticmethod
|
||
|
def load(path: str, logger: DistributedLogger, few_shot: bool) -> List[Dict]:
|
||
|
dataset = {"dev": {}, "test": {}}
|
||
|
for split in ["dev", "test"]:
|
||
|
files = os.listdir(os.path.join(path, split))
|
||
|
files.sort()
|
||
|
|
||
|
for file in files:
|
||
|
subject = file[0 : -len(".csv")]
|
||
|
subject = cmmlu_subject_mapping[subject]
|
||
|
|
||
|
file_dir = os.path.join(path, split, file)
|
||
|
|
||
|
dataset[split][subject] = {"data": []}
|
||
|
|
||
|
# It's been tested that each data sample in one subcategory have same inference arguments.
|
||
|
dataset[split][subject]["inference_kwargs"] = copy.deepcopy(default_inference_kwargs)
|
||
|
|
||
|
if split == "test" and few_shot:
|
||
|
dataset[split][subject]["inference_kwargs"]["few_shot_data"] = get_few_shot_data(
|
||
|
dataset["dev"][subject]["data"]
|
||
|
)
|
||
|
|
||
|
with open(file_dir, encoding="utf-8") as f:
|
||
|
reader = csv.reader(f)
|
||
|
_ = next(reader)
|
||
|
for row in reader:
|
||
|
assert len(row) == 7
|
||
|
choices = f"A. {row[2]}\nB. {row[3]}\nC. {row[4]}\nD. {row[5]}"
|
||
|
data_sample = {
|
||
|
"dataset": "cmmlu",
|
||
|
"split": split,
|
||
|
"category": subject,
|
||
|
"instruction": f"以下是关于{subject}的单项选择题,请直接给出正确答案的选项。",
|
||
|
"input": f"题目:{row[1]}\n{choices}\n答案:",
|
||
|
"output": "",
|
||
|
"target": row[6],
|
||
|
}
|
||
|
|
||
|
dataset[split][subject]["data"].append(data_sample)
|
||
|
|
||
|
return dataset
|