mirror of https://github.com/hpcaitech/ColossalAI
aibig-modeldata-parallelismdeep-learningdistributed-computingfoundation-modelsheterogeneous-traininghpcinferencelarge-scalemodel-parallelismpipeline-parallelism
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
178 lines
5.9 KiB
178 lines
5.9 KiB
2 years ago
|
import torch
|
||
|
from functools import partial
|
||
|
import pytest
|
||
|
import torch.distributed as dist
|
||
|
import torch.multiprocessing as mp
|
||
|
from torch.distributed import ReduceOp
|
||
|
from colossalai.core import global_context as gpc
|
||
|
from colossalai.initialize import launch
|
||
|
from colossalai.utils import free_port
|
||
|
from colossalai.testing import rerun_if_address_is_in_use
|
||
|
from colossalai.device.device_mesh import DeviceMesh
|
||
|
from colossalai.tensor.shape_consistency import CommSpec, CollectiveCommPattern
|
||
|
from colossalai.logging import disable_existing_loggers
|
||
|
from colossalai.tensor.sharding_spec import ShardingSpec
|
||
|
|
||
|
|
||
|
def check_all_gather(device_mesh, rank):
|
||
|
# tensor to comm
|
||
|
if rank in (0, 2):
|
||
|
sharded_tensor_to_comm = torch.ones(2, 2).cuda()
|
||
|
else:
|
||
|
sharded_tensor_to_comm = torch.zeros(2, 2).cuda()
|
||
|
|
||
|
# tensor to check
|
||
|
tensor_to_check = torch.cat((torch.ones(2, 2), torch.zeros(2, 2)), 1).cuda()
|
||
|
|
||
|
# test all gather
|
||
|
dim_partition_dict = {1: [1]}
|
||
|
|
||
|
# DistSpec:
|
||
|
# shard_sequence: R,S1
|
||
|
# device_mesh_shape: (2, 2)
|
||
|
sharding_spec = ShardingSpec(device_mesh, tensor_to_check.shape, dim_partition_dict=dim_partition_dict)
|
||
|
|
||
|
# CommSpec:(comm_pattern:allgather, gather_dim:1, logical_process_axis:1)
|
||
|
comm_spec = CommSpec(CollectiveCommPattern.ALLGATHER, sharding_spec, gather_dim=1, logical_process_axis=1)
|
||
|
comm_spec.covert_spec_to_action(sharded_tensor_to_comm)
|
||
|
|
||
|
assert sharded_tensor_to_comm.equal(tensor_to_check)
|
||
|
|
||
|
|
||
|
def check_shard(device_mesh, rank):
|
||
|
# tensor to comm
|
||
|
sharded_tensor_to_comm_0 = torch.zeros(2, 2).cuda()
|
||
|
sharded_tensor_to_comm_1 = torch.ones(2, 2).cuda()
|
||
|
# tensor([[0., 0., 1., 1.],
|
||
|
# [0., 0., 1., 1.]])
|
||
|
tensor_to_shard = torch.cat((sharded_tensor_to_comm_0, sharded_tensor_to_comm_1), 1)
|
||
|
|
||
|
# test shard
|
||
|
dim_partition_dict = {}
|
||
|
|
||
|
# DistSpec:
|
||
|
# shard_sequence: R,R
|
||
|
# device_mesh_shape: (2, 2)
|
||
|
sharding_spec = ShardingSpec(device_mesh, tensor_to_shard.shape, dim_partition_dict=dim_partition_dict)
|
||
|
|
||
|
# CommSpec:(comm_pattern:shard, shard_dim:1, logical_process_axis:1)
|
||
|
comm_spec = CommSpec(CollectiveCommPattern.SHARD, sharding_spec, shard_dim=1, logical_process_axis=1)
|
||
|
comm_spec.covert_spec_to_action(tensor_to_shard)
|
||
|
|
||
|
if rank in (0, 2):
|
||
|
assert tensor_to_shard.equal(sharded_tensor_to_comm_0)
|
||
|
if rank in (1, 3):
|
||
|
assert tensor_to_shard.equal(sharded_tensor_to_comm_1)
|
||
|
|
||
|
|
||
|
def check_all_to_all(device_mesh, rank):
|
||
|
# tensor to comm
|
||
|
if rank in (0, 1):
|
||
|
sharded_tensor_0 = torch.zeros(2, 1)
|
||
|
sharded_tensor_1 = torch.ones(2, 1)
|
||
|
# tensor([[0., 1.],
|
||
|
# [0., 1.]])
|
||
|
tensor_to_comm = torch.cat((sharded_tensor_0, sharded_tensor_1), 1).cuda()
|
||
|
if rank in (2, 3):
|
||
|
sharded_tensor_0 = torch.ones(2, 1) * 2
|
||
|
sharded_tensor_1 = torch.ones(2, 1) * 3
|
||
|
# tensor([[2., 3.],
|
||
|
# [2., 3.]])
|
||
|
tensor_to_comm = torch.cat((sharded_tensor_0, sharded_tensor_1), 1).cuda()
|
||
|
|
||
|
if rank in (0, 1):
|
||
|
# tensor([[0.],
|
||
|
# [0.],
|
||
|
# [2.],
|
||
|
# [2.]])
|
||
|
tensor_to_check = torch.tensor([[0], [0], [2], [2]], dtype=tensor_to_comm.dtype).cuda()
|
||
|
if rank in (2, 3):
|
||
|
# tensor([[1.],
|
||
|
# [1.],
|
||
|
# [3.],
|
||
|
# [3.]])
|
||
|
tensor_to_check = torch.tensor([[1], [1], [3], [3]], dtype=tensor_to_comm.dtype).cuda()
|
||
|
|
||
|
# test shard
|
||
|
dim_partition_dict = {0: [0]}
|
||
|
|
||
|
# DistSpec:
|
||
|
# shard_sequence: S0,R
|
||
|
# device_mesh_shape: (2, 2)
|
||
|
sharding_spec = ShardingSpec(device_mesh, torch.Size((4, 2)), dim_partition_dict=dim_partition_dict)
|
||
|
|
||
|
# CommSpec:(comm_pattern:shard, shard_dim:1, logical_process_axis:1)
|
||
|
comm_spec = CommSpec(CollectiveCommPattern.ALLTOALL,
|
||
|
sharding_spec,
|
||
|
gather_dim=0,
|
||
|
shard_dim=1,
|
||
|
logical_process_axis=0)
|
||
|
comm_spec.covert_spec_to_action(tensor_to_comm)
|
||
|
|
||
|
assert tensor_to_comm.equal(tensor_to_check)
|
||
|
|
||
|
|
||
|
def check_all_reduce(device_mesh, rank):
|
||
|
# tensor to comm
|
||
|
tensor_to_comm = torch.ones(2, 2).cuda() * rank
|
||
|
|
||
|
# reduce through logical process axis 0
|
||
|
# tensor to check
|
||
|
if rank in (0, 2):
|
||
|
# tensor([[2., 2.],
|
||
|
# [2., 2.]])
|
||
|
tensor_to_check = torch.tensor([[2, 2], [2, 2]], dtype=tensor_to_comm.dtype).cuda()
|
||
|
if rank in (1, 3):
|
||
|
# tensor([[4., 4.],
|
||
|
# [4., 4.]])
|
||
|
tensor_to_check = torch.tensor([[4, 4], [4, 4]], dtype=tensor_to_comm.dtype).cuda()
|
||
|
|
||
|
dim_partition_dict = {}
|
||
|
# DistSpec:
|
||
|
# shard_sequence: R,R
|
||
|
# device_mesh_shape: (2, 2)
|
||
|
sharding_spec = ShardingSpec(device_mesh, tensor_to_comm.shape, dim_partition_dict=dim_partition_dict)
|
||
|
|
||
|
# CommSpec:CommSpec:(comm_pattern:all_reduce, logical_process_axis:0)
|
||
|
comm_spec = CommSpec(CollectiveCommPattern.ALLREDUCE, sharding_spec, logical_process_axis=0)
|
||
|
comm_spec.covert_spec_to_action(tensor_to_comm)
|
||
|
|
||
|
assert tensor_to_comm.equal(tensor_to_check)
|
||
|
|
||
|
|
||
|
def check_comm(rank, world_size, port):
|
||
|
disable_existing_loggers()
|
||
|
launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
|
||
|
|
||
|
physical_mesh_id = torch.arange(0, 4)
|
||
|
assert rank == gpc.get_global_rank()
|
||
|
|
||
|
mesh_shape = (2, 2)
|
||
|
# [[0, 1,
|
||
|
# [2, 3]]
|
||
|
device_mesh = DeviceMesh(physical_mesh_id, mesh_shape, init_process_group=True)
|
||
|
# test all gather
|
||
|
check_all_gather(device_mesh, rank)
|
||
|
|
||
|
# test shard
|
||
|
check_shard(device_mesh, rank)
|
||
|
|
||
|
# test all to all
|
||
|
check_all_to_all(device_mesh, rank)
|
||
|
|
||
|
# test all reduce
|
||
|
check_all_reduce(device_mesh, rank)
|
||
|
gpc.destroy()
|
||
|
|
||
|
|
||
|
@pytest.mark.dist
|
||
|
@rerun_if_address_is_in_use()
|
||
|
def test_comm_spec():
|
||
|
world_size = 4
|
||
|
run_func = partial(check_comm, world_size=world_size, port=free_port())
|
||
|
mp.spawn(run_func, nprocs=world_size)
|
||
|
|
||
|
|
||
|
if __name__ == '__main__':
|
||
|
test_comm_spec()
|