mirror of https://github.com/hpcaitech/ColossalAI
57 lines
2.0 KiB
Python
57 lines
2.0 KiB
Python
![]() |
import pytest
|
||
|
import torch
|
||
|
from transformers.models.llama.modeling_llama import LlamaRotaryEmbedding, apply_rotary_pos_emb
|
||
|
|
||
|
from colossalai.kernel.triton import rotary_embedding
|
||
|
|
||
|
|
||
|
def torch_rotary_emb(x, cos, sin):
|
||
|
seq_len, h, dim = x.shape
|
||
|
x0 = x[:, :, 0 : dim // 2]
|
||
|
x1 = x[:, :, dim // 2 : dim]
|
||
|
cos = cos.view((seq_len, 1, dim // 2))
|
||
|
sin = sin.view((seq_len, 1, dim // 2))
|
||
|
o0 = x0 * cos - x1 * sin
|
||
|
o1 = x0 * sin + x1 * cos
|
||
|
return torch.cat((o0, o1), dim=-1)
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize("BATCH_SIZE", [4])
|
||
|
@pytest.mark.parametrize("SEQ_LEN", [64])
|
||
|
@pytest.mark.parametrize("H", [32])
|
||
|
@pytest.mark.parametrize("D", [64])
|
||
|
@pytest.mark.parametrize("dtype", [torch.float32])
|
||
|
def test_rotary_emb(BATCH_SIZE, SEQ_LEN, H, D, dtype):
|
||
|
TOTAL_TOKENS = BATCH_SIZE * SEQ_LEN
|
||
|
# our crafted op equals to Transformers
|
||
|
x0 = torch.randn(TOTAL_TOKENS, SEQ_LEN, D)
|
||
|
x1 = torch.randn(TOTAL_TOKENS, SEQ_LEN, D)
|
||
|
emb = LlamaRotaryEmbedding(D)
|
||
|
cos, sin = emb(x0, TOTAL_TOKENS)
|
||
|
cos_2 = cos[:, :32]
|
||
|
sin_2 = sin[:, :32]
|
||
|
position_ids = torch.arange(TOTAL_TOKENS)
|
||
|
embd_x0, _ = apply_rotary_pos_emb(x0, x1, cos, sin, position_ids)
|
||
|
embd_stimulated_x = torch_rotary_emb(x0, cos_2, sin_2)
|
||
|
assert torch.allclose(embd_x0, embd_stimulated_x)
|
||
|
|
||
|
# create data
|
||
|
q_shape = (TOTAL_TOKENS, H, D)
|
||
|
q = -2.3 + 0.5 * torch.randn(q_shape, dtype=dtype, device="cuda")
|
||
|
k_shape = (TOTAL_TOKENS, H, D)
|
||
|
k = -2.3 + 0.5 * torch.randn(k_shape, dtype=dtype, device="cuda")
|
||
|
cos_shape = (TOTAL_TOKENS, D // 2)
|
||
|
cos = -1.2 + 0.5 * torch.randn(cos_shape, dtype=dtype, device="cuda")
|
||
|
sin = -2.0 + 0.5 * torch.randn(cos_shape, dtype=dtype, device="cuda")
|
||
|
|
||
|
q_ref = torch_rotary_emb(q, cos, sin)
|
||
|
k_ref = torch_rotary_emb(k, cos, sin)
|
||
|
rotary_embedding(q, k, cos, sin)
|
||
|
|
||
|
assert torch.allclose(q, q_ref, atol=1e-4, rtol=1e-4)
|
||
|
assert torch.allclose(k, k_ref, atol=1e-4, rtol=1e-4)
|
||
|
|
||
|
|
||
|
if __name__ == "__main__":
|
||
|
test_rotary_emb(4, 64, 32, 64, torch.float32)
|