mirror of https://github.com/hpcaitech/ColossalAI
59 lines
2.3 KiB
Python
59 lines
2.3 KiB
Python
|
import torch
|
||
|
from colossalai.registry import OPHOOKS
|
||
|
from colossalai.zero.shard_utils import BaseShardStrategy
|
||
|
|
||
|
from ._base_ophook import BaseOpHook
|
||
|
|
||
|
|
||
|
@OPHOOKS.register_module
|
||
|
class ZeroHook(BaseOpHook):
|
||
|
"""
|
||
|
A hook to process sharded param for ZeRO method.
|
||
|
"""
|
||
|
|
||
|
def __init__(self, shard_strategy: BaseShardStrategy):
|
||
|
super().__init__()
|
||
|
self.shard_strategy = shard_strategy
|
||
|
|
||
|
def pre_fwd_exec(self, module: torch.nn.Module, *args):
|
||
|
for param in module.parameters():
|
||
|
assert hasattr(param, 'col_attr')
|
||
|
self.shard_strategy.gather([param.col_attr.data])
|
||
|
param.data = param.col_attr.data.payload
|
||
|
|
||
|
def post_fwd_exec(self, module: torch.nn.Module, *args):
|
||
|
for param in module.parameters():
|
||
|
assert hasattr(param, 'col_attr')
|
||
|
self.shard_strategy.shard([param.col_attr.data])
|
||
|
param.data = torch.empty([], dtype=param.col_attr.data.dtype, device=param.col_attr.data.payload.device)
|
||
|
|
||
|
def pre_bwd_exec(self, module: torch.nn.Module, input, output):
|
||
|
for param in module.parameters():
|
||
|
assert hasattr(param, 'col_attr')
|
||
|
self.shard_strategy.gather([param.col_attr.data])
|
||
|
param.data = param.col_attr.data.payload
|
||
|
# Store local accumulated grad shard
|
||
|
if param.grad is not None:
|
||
|
if param.col_attr.bwd_count == 0:
|
||
|
# We haven't stored local accumulated grad yet
|
||
|
assert param.col_attr.grad is None
|
||
|
param.col_attr.grad = param.grad.data
|
||
|
param.grad = None
|
||
|
else:
|
||
|
# We have stored local accumulated grad
|
||
|
# The grad here must be locally computed full grad in this backward pass
|
||
|
assert param.grad.shape == param.col_attr.data.origin_shape
|
||
|
param.col_attr.bwd_count += 1
|
||
|
|
||
|
def post_bwd_exec(self, module: torch.nn.Module, input):
|
||
|
for param in module.parameters():
|
||
|
assert hasattr(param, 'col_attr')
|
||
|
self.shard_strategy.shard([param.col_attr.data])
|
||
|
param.data = torch.empty([], dtype=param.col_attr.data.dtype, device=param.col_attr.data.payload.device)
|
||
|
|
||
|
def pre_iter(self):
|
||
|
pass
|
||
|
|
||
|
def post_iter(self):
|
||
|
pass
|