2022-11-30 08:40:13 +00:00
|
|
|
from typing import Optional
|
|
|
|
|
2022-11-08 07:53:13 +00:00
|
|
|
import torch
|
|
|
|
|
|
|
|
from colossalai.gemini.chunk import init_chunk_manager
|
|
|
|
from colossalai.gemini.gemini_mgr import GeminiManager
|
2022-12-12 10:06:16 +00:00
|
|
|
from colossalai.gemini.memory_tracer import MemStats
|
2022-11-08 07:53:13 +00:00
|
|
|
|
|
|
|
from .data_parallel import ZeroDDP
|
|
|
|
|
|
|
|
|
|
|
|
class GeminiDDP(ZeroDDP):
|
|
|
|
|
|
|
|
def __init__(self,
|
|
|
|
module: torch.nn.Module,
|
|
|
|
device: torch.device,
|
|
|
|
placement_policy: str = "cpu",
|
|
|
|
pin_memory: bool = False,
|
|
|
|
force_outputs_fp32: bool = False,
|
2023-01-20 06:04:38 +00:00
|
|
|
strict_ddp_mode: bool = False,
|
2022-11-30 08:40:13 +00:00
|
|
|
search_range_mb: int = 32,
|
|
|
|
hidden_dim: Optional[int] = None,
|
2023-01-28 06:35:25 +00:00
|
|
|
min_chunk_size_mb: float = 32,
|
2022-12-12 10:06:16 +00:00
|
|
|
memstats: Optional[MemStats] = None) -> None:
|
2022-11-08 07:53:13 +00:00
|
|
|
"""
|
2022-11-16 06:44:28 +00:00
|
|
|
A torch.Module warpper using ZeRO-DP and Genimi.
|
2022-11-08 07:53:13 +00:00
|
|
|
ZeRO is for parallel. Gemini is for memory management.
|
2022-11-16 06:44:28 +00:00
|
|
|
WARNING: The class will modify the module inline!
|
2022-11-08 07:53:13 +00:00
|
|
|
|
|
|
|
Example:
|
|
|
|
model is initialized under the context of ColoInitContext
|
|
|
|
>>> model = GeminiDDP(model, torch.cuda.current_device(), "cuda")
|
|
|
|
>>> logits = model(x)
|
|
|
|
>>> loss = criterion(logits, labels)
|
|
|
|
>>> model.backward(loss)
|
|
|
|
|
|
|
|
Args:
|
|
|
|
module (torch.nn.Module): the model to be wrapped.
|
|
|
|
device (torch.device): device to place the model.
|
|
|
|
placement_policy (str, optional): "cpu", "cuda", "auto". Defaults to "cpu".
|
|
|
|
pin_memory (bool, optional): use pin memory on CPU. Defaults to False.
|
|
|
|
force_outputs_fp32 (bool, optional): force outputs are fp32. Defaults to False.
|
|
|
|
search_range_mb (int, optional): chunk size searching range in MegaByte. Defaults to 32.
|
2022-11-30 08:40:13 +00:00
|
|
|
hidden_dim (int, optional): the hidden dimension of DNN.
|
|
|
|
Users can provide this argument to speed up searching.
|
|
|
|
If users do not know this argument before training, it is ok. We will use a default value 1024.
|
|
|
|
min_chunk_size_mb (float, optional): the minimum chunk size in MegaByte.
|
|
|
|
If the aggregate size of parameters is still samller than the minimum chunk size,
|
|
|
|
all parameters will be compacted into one small chunk.
|
2022-12-12 10:06:16 +00:00
|
|
|
memstats (MemStats, optional) the memory statistics collector by a runtime memory tracer.
|
2022-11-08 07:53:13 +00:00
|
|
|
"""
|
2022-11-30 08:40:13 +00:00
|
|
|
chunk_manager = init_chunk_manager(model=module,
|
|
|
|
init_device=device,
|
|
|
|
hidden_dim=hidden_dim,
|
|
|
|
search_range_mb=search_range_mb,
|
2023-01-28 06:35:25 +00:00
|
|
|
min_chunk_size_mb=min_chunk_size_mb,
|
|
|
|
strict_ddp_flag=strict_ddp_mode)
|
2022-12-12 10:06:16 +00:00
|
|
|
gemini_manager = GeminiManager(placement_policy, chunk_manager, memstats)
|
2023-01-20 06:04:38 +00:00
|
|
|
super().__init__(module, gemini_manager, pin_memory, force_outputs_fp32, strict_ddp_mode)
|