mirror of https://github.com/hpcaitech/ColossalAI
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
174 lines
7.1 KiB
174 lines
7.1 KiB
2 years ago
|
import os
|
||
|
import warnings
|
||
|
from pathlib import Path
|
||
|
from typing import Any, Dict, Optional, Union
|
||
|
|
||
|
import torch
|
||
|
import torch.fx
|
||
|
import torch.nn as nn
|
||
|
from torch.fx.graph import PythonCode, _PyTreeCodeGen
|
||
|
from torch.fx.graph_module import _exec_with_source, _forward_from_src, _WrappedCall
|
||
|
from torch.nn.modules.module import _addindent
|
||
|
|
||
|
|
||
|
class ColoGraphModule(torch.fx.GraphModule):
|
||
|
"""
|
||
|
ColoGraphGraphModule is an nn.Module generated from an fx.Graph.
|
||
|
ColoGraphmodule has a ``graph`` attribute, as well as ``code`` and ``forward``
|
||
|
attributes generated from that ``graph``.
|
||
|
|
||
|
The difference between ``ColoGraphModule`` and ``torch.fx.GraphModule`` is that
|
||
|
``ColoGraphModule`` has a ``bind()`` function to bind customized functions
|
||
|
(i.e. activation checkpoint) to ``code`` of ``nn.Module``. If you want to use
|
||
|
specific features in Colossal-AI that are not supported by ``torch.fx.GraphModule``,
|
||
|
you can use ``ColoGraphModule`` instead.
|
||
|
|
||
|
``colossalai.fx.symbolic_trace()`` will return a ``ColoGraphModule`` as default.
|
||
|
|
||
|
.. warning::
|
||
|
|
||
|
When ``graph`` is reassigned, ``code`` and ``forward`` will be automatically
|
||
|
regenerated. However, if you edit the contents of the ``graph`` without reassigning
|
||
|
the ``graph`` attribute itself, you must call ``recompile()`` to update the generated
|
||
|
code.
|
||
|
"""
|
||
|
|
||
|
def __init__(self,
|
||
|
root: Union[torch.nn.Module, Dict[str, Any]],
|
||
|
graph: torch.fx.Graph,
|
||
|
class_name: str = 'GraphModule'):
|
||
|
super().__init__(root, graph, class_name)
|
||
|
|
||
|
def bind(self, ckpt_def, globals):
|
||
|
"""Bind function needed for correctly execute ``GraphModule.forward()``
|
||
|
|
||
|
We need to bind checkpoint functions to ``ColoGraphModule`` so that we could
|
||
|
correctly execute ``GraphModule.forward()``
|
||
|
|
||
|
Args:
|
||
|
ckpt_def (List[str]): definition before the forward function
|
||
|
globals (Dict[str, Any]): global variables
|
||
|
"""
|
||
|
|
||
|
ckpt_code = "\n".join(ckpt_def)
|
||
|
globals_copy = globals.copy()
|
||
|
_exec_with_source(ckpt_code, globals_copy)
|
||
|
func_list = [func for func in globals_copy.keys() if "checkpoint" in func or "pack" in func]
|
||
|
for func in func_list:
|
||
|
tmp_func = globals_copy[func]
|
||
|
setattr(self, func, tmp_func.__get__(self, self.__class__))
|
||
|
del globals_copy[func]
|
||
|
|
||
|
def recompile(self) -> PythonCode:
|
||
|
"""
|
||
|
Recompile this GraphModule from its ``graph`` attribute. This should be
|
||
|
called after editing the contained ``graph``, otherwise the generated
|
||
|
code of this ``GraphModule`` will be out of date.
|
||
|
"""
|
||
|
if isinstance(self._graph._codegen, _PyTreeCodeGen):
|
||
|
self._in_spec = self._graph._codegen.pytree_info.in_spec
|
||
|
self._out_spec = self._graph._codegen.pytree_info.out_spec
|
||
|
python_code = self._graph.python_code(root_module='self')
|
||
|
self._code = python_code.src
|
||
|
|
||
|
# To split ckpt functions code and forward code
|
||
|
_code_list = self._code.split("\n")
|
||
|
_fwd_def = [item for item in _code_list if "def forward" in item][0]
|
||
|
_fwd_idx = _code_list.index(_fwd_def)
|
||
|
ckpt_def = _code_list[:_fwd_idx]
|
||
|
self._code = "\n".join(_code_list[_fwd_idx:])
|
||
|
|
||
|
self.bind(ckpt_def, python_code.globals)
|
||
|
|
||
|
cls = type(self)
|
||
|
cls.forward = _forward_from_src(self._code, python_code.globals)
|
||
|
|
||
|
# Determine whether this class explicitly defines a __call__ implementation
|
||
|
# to wrap. If it does, save it in order to have wrapped_call invoke it.
|
||
|
# If it does not, wrapped_call can use a dynamic call to super() instead.
|
||
|
# In most cases, super().__call__ should be torch.nn.Module.__call__.
|
||
|
# We do not want to hold a reference to Module.__call__ here; doing so will
|
||
|
# bypass patching of torch.nn.Module.__call__ done while symbolic tracing.
|
||
|
cls_call = cls.__call__ if "__call__" in vars(cls) else None
|
||
|
|
||
|
if '_wrapped_call' not in vars(cls):
|
||
|
cls._wrapped_call = _WrappedCall(cls, cls_call) # type: ignore[attr-defined]
|
||
|
|
||
|
def call_wrapped(self, *args, **kwargs):
|
||
|
return self._wrapped_call(self, *args, **kwargs)
|
||
|
|
||
|
cls.__call__ = call_wrapped
|
||
|
|
||
|
# reset self._code to original src, otherwise to_folder will be wrong
|
||
|
self._code = python_code.src
|
||
|
return python_code
|
||
|
|
||
|
def to_folder(self, folder: Union[str, os.PathLike], module_name: str = "FxModule"):
|
||
|
"""Dumps out module to ``folder`` with ``module_name`` so that it can be
|
||
|
imported with ``from <folder> import <module_name>``
|
||
|
|
||
|
Args:
|
||
|
|
||
|
folder (Union[str, os.PathLike]): The folder to write the code out to
|
||
|
|
||
|
module_name (str): Top-level name to use for the ``Module`` while
|
||
|
writing out the code
|
||
|
"""
|
||
|
folder = Path(folder)
|
||
|
Path(folder).mkdir(exist_ok=True)
|
||
|
torch.save(self.state_dict(), folder / 'state_dict.pt')
|
||
|
tab = " " * 4
|
||
|
|
||
|
# we add import colossalai here
|
||
|
model_str = f"""
|
||
|
import torch
|
||
|
from torch.nn import *
|
||
|
import colossalai
|
||
|
|
||
|
|
||
|
class {module_name}(torch.nn.Module):
|
||
|
def __init__(self):
|
||
|
super().__init__()
|
||
|
"""
|
||
|
|
||
|
def _gen_model_repr(module_name: str, module: torch.nn.Module) -> Optional[str]:
|
||
|
safe_reprs = [nn.Linear, nn.Conv1d, nn.Conv2d, nn.Conv3d, nn.BatchNorm1d, nn.BatchNorm2d, nn.BatchNorm3d]
|
||
|
if type(module) in safe_reprs:
|
||
|
return f"{module.__repr__()}"
|
||
|
else:
|
||
|
return None
|
||
|
|
||
|
blobified_modules = []
|
||
|
for module_name, module in self.named_children():
|
||
|
module_str = _gen_model_repr(module_name, module)
|
||
|
if module_str is None:
|
||
|
module_file = folder / f'{module_name}.pt'
|
||
|
torch.save(module, module_file)
|
||
|
blobified_modules.append(module_name)
|
||
|
module_repr = module.__repr__().replace('\r', ' ').replace('\n', ' ')
|
||
|
module_str = f"torch.load(r'{module_file}') # {module_repr}"
|
||
|
model_str += f"{tab*2}self.{module_name} = {module_str}\n"
|
||
|
|
||
|
for buffer_name, buffer in self._buffers.items():
|
||
|
if buffer is None:
|
||
|
continue
|
||
|
model_str += f"{tab*2}self.register_buffer('{buffer_name}', torch.empty({list(buffer.shape)}, dtype={buffer.dtype}))\n"
|
||
|
|
||
|
for param_name, param in self._parameters.items():
|
||
|
if param is None:
|
||
|
continue
|
||
|
model_str += f"{tab*2}self.{param_name} = torch.nn.Parameter(torch.empty({list(param.shape)}, dtype={param.dtype}))\n"
|
||
|
|
||
|
model_str += f"{tab*2}self.load_state_dict(torch.load(r'{folder}/state_dict.pt'))\n"
|
||
|
model_str += f"{_addindent(self.code, 4)}\n"
|
||
|
|
||
|
module_file = folder / 'module.py'
|
||
|
module_file.write_text(model_str)
|
||
|
|
||
|
init_file = folder / '__init__.py'
|
||
|
init_file.write_text('from .module import *')
|
||
|
|
||
|
if len(blobified_modules) > 0:
|
||
|
warnings.warn("Was not able to save the following children modules as reprs -"
|
||
|
f"saved as pickled files instead: {blobified_modules}")
|