ColossalAI/colossalai/booster/plugin/gemini_plugin.py

413 lines
19 KiB
Python
Raw Normal View History

import gc
import logging
import os
import warnings
[booster] gemini plugin support shard checkpoint (#3610) * gemini plugin add shard checkpoint save/load * gemini plugin add shard checkpoint save/load * gemini plugin add shard checkpoint save/load * gemini plugin add shard checkpoint save/load * gemini plugin add shard checkpoint save/load * gemini plugin add shard checkpoint save/load * gemini plugin add shard checkpoint save/load * gemini plugin add shard checkpoint save/load * gemini plugin add shard checkpoint save/load * gemini plugin add shard checkpoint save/load * gemini plugin add shard checkpoint save/load * gemini plugin add shard checkpoint save/load * gemini plugin add shard checkpoint save/load * gemini plugin add shard checkpoint save/load * gemini plugin support shard checkpoint * [API Refactoring]gemini plugin support shard checkpoint * [API Refactoring]gemini plugin support shard checkpoint * [API Refactoring]gemini plugin support shard checkpoint * [API Refactoring]gemini plugin support shard checkpoint * [API Refactoring]gemini plugin support shard checkpoint * [API Refactoring]gemini plugin support shard checkpoint * [API Refactoring]gemini plugin support shard checkpoint * [API Refactoring]gemini plugin support shard checkpoint * [API Refactoring]gemini plugin support shard checkpoint * [API Refactoring]gemini plugin support shard checkpoint * [API Refactoring]gemini plugin support shard checkpoint * [API Refactoring]gemini plugin support shard checkpoint * [API Refactoring]gemini plugin support shard checkpoint --------- Co-authored-by: luchen <luchen@luchendeMBP.lan> Co-authored-by: luchen <luchen@luchendeMacBook-Pro.local>
2023-05-05 06:37:21 +00:00
from pathlib import Path
from typing import Callable, Iterator, List, Optional, Tuple, Union
import torch
import torch.nn as nn
from torch import Tensor
from torch.optim import Optimizer
from torch.optim.lr_scheduler import _LRScheduler as LRScheduler
from torch.utils.data import DataLoader
from colossalai.checkpoint_io import CheckpointIndexFile, CheckpointIO, GeneralCheckpointIO
from colossalai.checkpoint_io.utils import (
get_model_base_filenames,
get_optimizer_base_filenames,
get_shard_filename,
load_shard_state_dict,
save_state_dict,
save_state_dict_shards,
)
from colossalai.cluster import DistCoordinator
from colossalai.interface import ModelWrapper, OptimizerWrapper
from colossalai.utils import get_current_device
from colossalai.zero import GeminiDDP, zero_model_wrapper, zero_optim_wrapper
from colossalai.zero.gemini import ZeroOptimizer
from colossalai.zero.gemini.memory_tracer import MemStats
from .dp_plugin_base import DPPluginBase
__all__ = ['GeminiPlugin']
SUPPORTED_PRECISION = ['fp16', 'bf16']
PRECISION_STR_TO_DTYPE = {'fp16': torch.half, 'bf16': torch.bfloat16}
class GeminiCheckpointIO(GeneralCheckpointIO):
def __init__(self) -> None:
super().__init__()
self.coordinator = DistCoordinator()
def save_unsharded_model(self, model: GeminiDDP, checkpoint: str, gather_dtensor: bool, use_safetensors: bool):
"""
Save sharded model to checkpoint but only on master process.
The model should be unwrapped in self.load_model via ModelWrapper.unwrap.
As there is communication when getting state dict, model.state_dict() must be called on all processes.
"""
state_dict = model.state_dict(only_rank_0=True)
if self.coordinator.is_master():
save_state_dict(state_dict, checkpoint, use_safetensors)
def load_unsharded_model(self, model: GeminiDDP, checkpoint: str, strict: bool = True):
"""
Load model from checkpoint with automatic unwrapping.
The model should be unwrapped in self.load_model via ModelWrapper.unwrap.
"""
super().load_unsharded_model(model, checkpoint, strict=strict)
def save_unsharded_optimizer(self, optimizer: Optimizer, checkpoint: str, gather_dtensor: bool):
"""
Save unsharded optimizer state dict to checkpoint.
After calling optimizer.state_dict(), the complete optimizer states will be collected on master rank.
As there is communication when getting state dict, optimizer.state_dict() must be called on all processes.
The saving process will only be executed by master rank.
"""
state_dict = optimizer.state_dict()
if self.coordinator.is_master():
save_state_dict(state_dict, checkpoint, use_safetensors=False)
def load_unsharded_optimizer(self, optimizer: Optimizer, checkpoint: str):
"""
Loading unsharded optimizer from checkpoint file.
For each process, only loading optimizer states of parameters it controls.
"""
super().load_unsharded_optimizer(optimizer, checkpoint)
def save_sharded_model(self,
model: GeminiDDP,
checkpoint_path: str,
gather_dtensor: bool = False,
prefix: Optional[str] = None,
max_shard_size: int = 1024,
use_safetensors: bool = False):
[booster] gemini plugin support shard checkpoint (#3610) * gemini plugin add shard checkpoint save/load * gemini plugin add shard checkpoint save/load * gemini plugin add shard checkpoint save/load * gemini plugin add shard checkpoint save/load * gemini plugin add shard checkpoint save/load * gemini plugin add shard checkpoint save/load * gemini plugin add shard checkpoint save/load * gemini plugin add shard checkpoint save/load * gemini plugin add shard checkpoint save/load * gemini plugin add shard checkpoint save/load * gemini plugin add shard checkpoint save/load * gemini plugin add shard checkpoint save/load * gemini plugin add shard checkpoint save/load * gemini plugin add shard checkpoint save/load * gemini plugin support shard checkpoint * [API Refactoring]gemini plugin support shard checkpoint * [API Refactoring]gemini plugin support shard checkpoint * [API Refactoring]gemini plugin support shard checkpoint * [API Refactoring]gemini plugin support shard checkpoint * [API Refactoring]gemini plugin support shard checkpoint * [API Refactoring]gemini plugin support shard checkpoint * [API Refactoring]gemini plugin support shard checkpoint * [API Refactoring]gemini plugin support shard checkpoint * [API Refactoring]gemini plugin support shard checkpoint * [API Refactoring]gemini plugin support shard checkpoint * [API Refactoring]gemini plugin support shard checkpoint * [API Refactoring]gemini plugin support shard checkpoint * [API Refactoring]gemini plugin support shard checkpoint --------- Co-authored-by: luchen <luchen@luchendeMBP.lan> Co-authored-by: luchen <luchen@luchendeMacBook-Pro.local>
2023-05-05 06:37:21 +00:00
"""
Save sharded model.
As there is communication when getting state dict, model.state_dict() must be called on all processes.
[booster] gemini plugin support shard checkpoint (#3610) * gemini plugin add shard checkpoint save/load * gemini plugin add shard checkpoint save/load * gemini plugin add shard checkpoint save/load * gemini plugin add shard checkpoint save/load * gemini plugin add shard checkpoint save/load * gemini plugin add shard checkpoint save/load * gemini plugin add shard checkpoint save/load * gemini plugin add shard checkpoint save/load * gemini plugin add shard checkpoint save/load * gemini plugin add shard checkpoint save/load * gemini plugin add shard checkpoint save/load * gemini plugin add shard checkpoint save/load * gemini plugin add shard checkpoint save/load * gemini plugin add shard checkpoint save/load * gemini plugin support shard checkpoint * [API Refactoring]gemini plugin support shard checkpoint * [API Refactoring]gemini plugin support shard checkpoint * [API Refactoring]gemini plugin support shard checkpoint * [API Refactoring]gemini plugin support shard checkpoint * [API Refactoring]gemini plugin support shard checkpoint * [API Refactoring]gemini plugin support shard checkpoint * [API Refactoring]gemini plugin support shard checkpoint * [API Refactoring]gemini plugin support shard checkpoint * [API Refactoring]gemini plugin support shard checkpoint * [API Refactoring]gemini plugin support shard checkpoint * [API Refactoring]gemini plugin support shard checkpoint * [API Refactoring]gemini plugin support shard checkpoint * [API Refactoring]gemini plugin support shard checkpoint --------- Co-authored-by: luchen <luchen@luchendeMBP.lan> Co-authored-by: luchen <luchen@luchendeMacBook-Pro.local>
2023-05-05 06:37:21 +00:00
"""
if os.path.isfile(checkpoint_path):
logging.error(f"Provided path ({checkpoint_path}) should be a directory, not a file")
return
Path(checkpoint_path).mkdir(parents=True, exist_ok=True)
[booster] gemini plugin support shard checkpoint (#3610) * gemini plugin add shard checkpoint save/load * gemini plugin add shard checkpoint save/load * gemini plugin add shard checkpoint save/load * gemini plugin add shard checkpoint save/load * gemini plugin add shard checkpoint save/load * gemini plugin add shard checkpoint save/load * gemini plugin add shard checkpoint save/load * gemini plugin add shard checkpoint save/load * gemini plugin add shard checkpoint save/load * gemini plugin add shard checkpoint save/load * gemini plugin add shard checkpoint save/load * gemini plugin add shard checkpoint save/load * gemini plugin add shard checkpoint save/load * gemini plugin add shard checkpoint save/load * gemini plugin support shard checkpoint * [API Refactoring]gemini plugin support shard checkpoint * [API Refactoring]gemini plugin support shard checkpoint * [API Refactoring]gemini plugin support shard checkpoint * [API Refactoring]gemini plugin support shard checkpoint * [API Refactoring]gemini plugin support shard checkpoint * [API Refactoring]gemini plugin support shard checkpoint * [API Refactoring]gemini plugin support shard checkpoint * [API Refactoring]gemini plugin support shard checkpoint * [API Refactoring]gemini plugin support shard checkpoint * [API Refactoring]gemini plugin support shard checkpoint * [API Refactoring]gemini plugin support shard checkpoint * [API Refactoring]gemini plugin support shard checkpoint * [API Refactoring]gemini plugin support shard checkpoint --------- Co-authored-by: luchen <luchen@luchendeMBP.lan> Co-authored-by: luchen <luchen@luchendeMacBook-Pro.local>
2023-05-05 06:37:21 +00:00
state_dict_shard = model.state_dict_shard(max_shard_size=max_shard_size, only_rank_0=True, dtype=torch.float32)
weights_name, save_index_file = get_model_base_filenames(prefix, use_safetensors)
[booster] gemini plugin support shard checkpoint (#3610) * gemini plugin add shard checkpoint save/load * gemini plugin add shard checkpoint save/load * gemini plugin add shard checkpoint save/load * gemini plugin add shard checkpoint save/load * gemini plugin add shard checkpoint save/load * gemini plugin add shard checkpoint save/load * gemini plugin add shard checkpoint save/load * gemini plugin add shard checkpoint save/load * gemini plugin add shard checkpoint save/load * gemini plugin add shard checkpoint save/load * gemini plugin add shard checkpoint save/load * gemini plugin add shard checkpoint save/load * gemini plugin add shard checkpoint save/load * gemini plugin add shard checkpoint save/load * gemini plugin support shard checkpoint * [API Refactoring]gemini plugin support shard checkpoint * [API Refactoring]gemini plugin support shard checkpoint * [API Refactoring]gemini plugin support shard checkpoint * [API Refactoring]gemini plugin support shard checkpoint * [API Refactoring]gemini plugin support shard checkpoint * [API Refactoring]gemini plugin support shard checkpoint * [API Refactoring]gemini plugin support shard checkpoint * [API Refactoring]gemini plugin support shard checkpoint * [API Refactoring]gemini plugin support shard checkpoint * [API Refactoring]gemini plugin support shard checkpoint * [API Refactoring]gemini plugin support shard checkpoint * [API Refactoring]gemini plugin support shard checkpoint * [API Refactoring]gemini plugin support shard checkpoint --------- Co-authored-by: luchen <luchen@luchendeMBP.lan> Co-authored-by: luchen <luchen@luchendeMacBook-Pro.local>
2023-05-05 06:37:21 +00:00
index_file = CheckpointIndexFile(checkpoint_path)
# Save shards of optimizer states.
is_master = self.coordinator.is_master()
total_size = save_state_dict_shards(sharded_state_dict=state_dict_shard,
checkpoint=checkpoint_path,
index_file=index_file,
base_filename=weights_name,
is_master=is_master,
use_safetensors=use_safetensors)
# only save the index file on the master rank
if self.coordinator.is_master():
index_file.append_meta_data("total_size", total_size)
index_file.write_index_file(save_index_file)
logging.info(f"The model is split into checkpoint shards. "
f"You can find where each parameters has been saved in the "
f"index located at {save_index_file}.")
def load_sharded_model(self,
model: GeminiDDP,
checkpoint_index_file: Path,
strict: bool = False,
use_safetensors: bool = False):
[booster] gemini plugin support shard checkpoint (#3610) * gemini plugin add shard checkpoint save/load * gemini plugin add shard checkpoint save/load * gemini plugin add shard checkpoint save/load * gemini plugin add shard checkpoint save/load * gemini plugin add shard checkpoint save/load * gemini plugin add shard checkpoint save/load * gemini plugin add shard checkpoint save/load * gemini plugin add shard checkpoint save/load * gemini plugin add shard checkpoint save/load * gemini plugin add shard checkpoint save/load * gemini plugin add shard checkpoint save/load * gemini plugin add shard checkpoint save/load * gemini plugin add shard checkpoint save/load * gemini plugin add shard checkpoint save/load * gemini plugin support shard checkpoint * [API Refactoring]gemini plugin support shard checkpoint * [API Refactoring]gemini plugin support shard checkpoint * [API Refactoring]gemini plugin support shard checkpoint * [API Refactoring]gemini plugin support shard checkpoint * [API Refactoring]gemini plugin support shard checkpoint * [API Refactoring]gemini plugin support shard checkpoint * [API Refactoring]gemini plugin support shard checkpoint * [API Refactoring]gemini plugin support shard checkpoint * [API Refactoring]gemini plugin support shard checkpoint * [API Refactoring]gemini plugin support shard checkpoint * [API Refactoring]gemini plugin support shard checkpoint * [API Refactoring]gemini plugin support shard checkpoint * [API Refactoring]gemini plugin support shard checkpoint --------- Co-authored-by: luchen <luchen@luchendeMBP.lan> Co-authored-by: luchen <luchen@luchendeMacBook-Pro.local>
2023-05-05 06:37:21 +00:00
"""
Load shard model, load model from multiple files.
[booster] gemini plugin support shard checkpoint (#3610) * gemini plugin add shard checkpoint save/load * gemini plugin add shard checkpoint save/load * gemini plugin add shard checkpoint save/load * gemini plugin add shard checkpoint save/load * gemini plugin add shard checkpoint save/load * gemini plugin add shard checkpoint save/load * gemini plugin add shard checkpoint save/load * gemini plugin add shard checkpoint save/load * gemini plugin add shard checkpoint save/load * gemini plugin add shard checkpoint save/load * gemini plugin add shard checkpoint save/load * gemini plugin add shard checkpoint save/load * gemini plugin add shard checkpoint save/load * gemini plugin add shard checkpoint save/load * gemini plugin support shard checkpoint * [API Refactoring]gemini plugin support shard checkpoint * [API Refactoring]gemini plugin support shard checkpoint * [API Refactoring]gemini plugin support shard checkpoint * [API Refactoring]gemini plugin support shard checkpoint * [API Refactoring]gemini plugin support shard checkpoint * [API Refactoring]gemini plugin support shard checkpoint * [API Refactoring]gemini plugin support shard checkpoint * [API Refactoring]gemini plugin support shard checkpoint * [API Refactoring]gemini plugin support shard checkpoint * [API Refactoring]gemini plugin support shard checkpoint * [API Refactoring]gemini plugin support shard checkpoint * [API Refactoring]gemini plugin support shard checkpoint * [API Refactoring]gemini plugin support shard checkpoint --------- Co-authored-by: luchen <luchen@luchendeMBP.lan> Co-authored-by: luchen <luchen@luchendeMacBook-Pro.local>
2023-05-05 06:37:21 +00:00
"""
return super().load_sharded_model(model, checkpoint_index_file, strict, use_safetensors, load_sub_module=False)
def save_sharded_optimizer(self, optimizer: Optimizer, checkpoint: Path, gather_dtensor: bool, prefix: str,
size_per_shard: int):
"""
Save sharded optimizer state dict to checkpoint folder.
As there is communication when getting state dict, this must be called on all processes.
"""
# If optimizer is wrapped, unwrap it.
if isinstance(optimizer, OptimizerWrapper):
optimizer = optimizer.unwrap()
assert isinstance(optimizer, ZeroOptimizer)
if os.path.isfile(checkpoint):
logging.error(f"Provided path ({checkpoint}) should be a directory, not a file")
return
Path(checkpoint).mkdir(parents=True, exist_ok=True)
# Preparing file paths and index file.
states_name, save_index_file, param_group_file = get_optimizer_base_filenames(prefix)
index_file = CheckpointIndexFile(checkpoint)
# Store the information of param groups to param_group_file.
index_file.append_meta_data("param_groups", param_group_file)
group_file_path = os.path.join(checkpoint, param_group_file)
param_groups = optimizer.get_param_groups_for_saving()
torch.save(param_groups, group_file_path)
# States are broken into shards within max_shard_size.
state_dict_shard = optimizer.state_shard(prefix=prefix, max_shard_size=size_per_shard, only_rank_0=True)
# Save shards of optimizer states.
is_master = self.coordinator.is_master()
total_size = save_state_dict_shards(sharded_state_dict=state_dict_shard,
checkpoint=checkpoint,
index_file=index_file,
base_filename=states_name,
is_master=is_master,
use_safetensors=False)
# Wrap up index file. Only save it on master rank.
if self.coordinator.is_master():
index_file.append_meta_data("total_size", total_size)
index_file.write_index_file(save_index_file)
logging.info(f"The optimizer is going to be split to checkpoint shards. "
f"You can find where each parameters has been saved in the "
f"index located at {save_index_file}.")
def load_sharded_optimizer(self, optimizer: Optimizer, checkpoint_index_file: Path, prefix: str):
"""
Loading sharded optimizer from checkpoint folder, with index file given.
For each process, only loading optimizer states of parameters it controls.
"""
if not os.path.isfile(checkpoint_index_file):
logging.error(f"Provided path ({checkpoint_index_file}) should be a file")
# If optimizer is wrapped, unwrap it.
if isinstance(optimizer, OptimizerWrapper):
optimizer = optimizer.unwrap()
assert isinstance(optimizer, ZeroOptimizer)
# Read checkpoint index file.
ckpt_index_file = CheckpointIndexFile.from_file(checkpoint_index_file)
# Load param_groups.
param_group_path = ckpt_index_file.get_param_group_filename()
if param_group_path is None:
raise RuntimeError(f'Invalid index file path {checkpoint_index_file} for an optimizer. \
Lacking param group file under current directory.')
saved_param_groups = torch.load(param_group_path)
optimizer.load_param_groups(saved_param_groups)
checkpoint_files, _ = ckpt_index_file.get_checkpoint_filenames()
# Load optimizer states from shard files under checkpoint path.
# For each file, only load the states managed by current process.
for shard_file in checkpoint_files:
state_dict_shard = load_shard_state_dict(Path(shard_file), use_safetensors=False)
optimizer.load_param_states(state_dict_shard)
del state_dict_shard
gc.collect()
optimizer.optimizer_loading_epilogue()
def save_lr_scheduler(self, lr_scheduler: LRScheduler, checkpoint: str):
"""
Save model to checkpoint but only on master process.
"""
if self.coordinator.is_master():
super().save_lr_scheduler(lr_scheduler, checkpoint)
class GeminiModel(ModelWrapper):
def __init__(self, module: nn.Module, gemini_config: dict, verbose: bool = False) -> None:
super().__init__(module)
self.module = zero_model_wrapper(module, zero_stage=3, gemini_config=gemini_config, verbose=verbose)
def unwrap(self):
# as save/load state dict is coupled with the GeminiDDP, we only return GeminiDDP model
return self.module
class GeminiOptimizer(OptimizerWrapper):
def __init__(self,
module: GeminiDDP,
optimizer: Optimizer,
zero_optim_config: dict,
optim_kwargs: dict,
verbose: bool = False) -> None:
optimizer = zero_optim_wrapper(module,
optimizer,
optim_config=zero_optim_config,
**optim_kwargs,
verbose=verbose)
super().__init__(optimizer)
def backward(self, loss: Tensor, *args, **kwargs):
self.optim.backward(loss)
def clip_grad_by_norm(self,
max_norm: Union[float, int],
norm_type: Union[float, int] = 2,
error_if_nonfinite: bool = False,
*args,
**kwargs) -> Tensor:
warnings.warn(f'Gemini controls grad clipping by itself, so you should not use clip_grad_by_norm')
def clip_grad_by_value(self, clip_value: float, *args, **kwargs) -> None:
raise NotImplementedError('Gemini does not support clip_grad_by_value')
class GeminiPlugin(DPPluginBase):
"""
Plugin for Gemini.
Example:
>>> from colossalai.booster import Booster
>>> from colossalai.booster.plugin import GeminiPlugin
>>>
>>> model, train_dataset, optimizer, criterion = ...
>>> plugin = GeminiPlugin()
>>> train_dataloader = plugin.prepare_dataloader(train_dataset, batch_size=8)
>>> booster = Booster(plugin=plugin)
>>> model, optimizer, train_dataloader, criterion = booster.boost(model, optimizer, train_dataloader, criterion)
Args:
device (torch.device): device to place the model.
placement_policy (str, optional): "cpu", "cuda", "auto". Defaults to "cpu".
precision (str, optional): precision. Support 'fp16' and 'bf16'. Defaults to 'fp16'.
pin_memory (bool, optional): use pin memory on CPU. Defaults to False.
force_outputs_fp32 (bool, optional): force outputs are fp32. Defaults to False.
strict_ddp_mode (bool, optional): use strict ddp mode (only use dp without other parallelism). Defaults to False.
search_range_m (int, optional): chunk size searching range divided by 2^20. Defaults to 32.
hidden_dim (int, optional): the hidden dimension of DNN.
Users can provide this argument to speed up searching.
If users do not know this argument before training, it is ok. We will use a default value 1024.
min_chunk_size_m (float, optional): the minimum chunk size divided by 2^20.
If the aggregate size of parameters is still smaller than the minimum chunk size,
all parameters will be compacted into one small chunk.
memstats (MemStats, optional) the memory statistics collector by a runtime memory tracer.
gpu_margin_mem_ratio (float, optional): The ratio of GPU remaining memory (after the first forward-backward)
which will be used when using hybrid CPU optimizer.
This argument is meaningless when `placement_policy` of `GeminiManager` is not "auto".
Defaults to 0.0.
initial_scale (float, optional): Initial scale used by DynamicGradScaler. Defaults to 2**16.
min_scale (float, optional): Min scale used by DynamicGradScaler. Defaults to 1.
growth_factor (float, optional): growth_factor used by DynamicGradScaler. Defaults to 2.
backoff_factor (float, optional): backoff_factor used by DynamicGradScaler. Defaults to 0.5.
growth_interval (float, optional): growth_interval used by DynamicGradScaler. Defaults to 1000.
hysteresis (float, optional): hysteresis used by DynamicGradScaler. Defaults to 2.
max_scale (int, optional): max_scale used by DynamicGradScaler. Defaults to 2**32.
max_norm (float, optional): max_norm used for `clip_grad_norm`. You should notice that you shall not do
clip_grad_norm by yourself when using ZeRO DDP. The ZeRO optimizer will take care of clip_grad_norm.
norm_type (float, optional): norm_type used for `clip_grad_norm`.
verbose (bool, optional): verbose mode. Debug info including chunk search result will be printed. Defaults to False.
"""
def __init__(
self,
device: Optional[torch.device] = None,
placement_policy: str = "cpu",
precision: str = "fp16",
pin_memory: bool = False,
force_outputs_fp32: bool = False,
strict_ddp_mode: bool = False,
search_range_m: int = 32,
hidden_dim: Optional[int] = None,
min_chunk_size_m: float = 32,
memstats: Optional[MemStats] = None,
gpu_margin_mem_ratio: float = 0.0,
initial_scale: float = 2**16,
min_scale: float = 1,
growth_factor: float = 2,
backoff_factor: float = 0.5,
growth_interval: int = 1000,
hysteresis: int = 2,
max_scale: float = 2**32,
max_norm: float = 0.0,
norm_type: float = 2.0,
verbose: bool = False,
) -> None:
super().__init__()
assert precision in SUPPORTED_PRECISION, f'precision {precision} is not supported'
self.gemini_config = dict(
device=(device or get_current_device()),
placement_policy=placement_policy,
pin_memory=pin_memory,
force_outputs_fp32=force_outputs_fp32,
strict_ddp_mode=strict_ddp_mode,
search_range_m=search_range_m,
hidden_dim=hidden_dim,
min_chunk_size_m=min_chunk_size_m,
memstats=memstats,
mixed_precision=PRECISION_STR_TO_DTYPE[precision],
)
self.zero_optim_config = dict(gpu_margin_mem_ratio=gpu_margin_mem_ratio,)
self.optim_kwargs = dict(initial_scale=initial_scale,
growth_factor=growth_factor,
backoff_factor=backoff_factor,
growth_interval=growth_interval,
hysteresis=hysteresis,
min_scale=min_scale,
max_scale=max_scale,
max_norm=max_norm,
norm_type=norm_type)
self.verbose = verbose
def support_no_sync(self) -> bool:
return False
def control_precision(self) -> bool:
return True
def supported_precisions(self) -> List[str]:
return SUPPORTED_PRECISION
def control_device(self) -> bool:
return True
def supported_devices(self) -> List[str]:
return ['cuda']
def configure(
self,
model: nn.Module,
optimizer: Optional[Optimizer] = None,
criterion: Optional[Callable] = None,
dataloader: Optional[DataLoader] = None,
lr_scheduler: Optional[LRScheduler] = None,
) -> Tuple[nn.Module, OptimizerWrapper, Callable, DataLoader, LRScheduler]:
if not isinstance(model, ModelWrapper):
# convert model to sync bn
# FIXME(ver217): gemini does not support sync bn
# In torch/nn/modules/_functions.py, line 22, ``mean, invstd = torch.batch_norm_stats(input, eps)`` will get fp32 mean and invstd even though the input is fp16.
# This inconsistency of dtype will cause the error.
# We have two possible solutions:
# 1. keep batch norm always in fp32. This is hard for gemini, as it use chunks.
# 2. patch sync bn or write a new on. This is relatively easy, but we need to test it.
# model = nn.SyncBatchNorm.convert_sync_batchnorm(model, None)
# wrap the model with Gemini
model = GeminiModel(model, self.gemini_config, self.verbose)
if optimizer is not None and \
not isinstance(optimizer, OptimizerWrapper):
optimizer = GeminiOptimizer(model.unwrap(), optimizer, self.zero_optim_config, self.optim_kwargs,
self.verbose)
return model, optimizer, criterion, dataloader, lr_scheduler
def control_checkpoint_io(self) -> bool:
return True
def get_checkpoint_io(self) -> CheckpointIO:
return GeminiCheckpointIO()
def no_sync(self, model: nn.Module, optimizer: OptimizerWrapper) -> Iterator[None]:
raise NotImplementedError