2022-12-20 07:03:26 +00:00
|
|
|
import os
|
|
|
|
import random
|
2022-11-14 09:28:03 +00:00
|
|
|
|
2022-12-20 07:03:26 +00:00
|
|
|
import numpy as np
|
2022-11-14 09:28:03 +00:00
|
|
|
import pytest
|
|
|
|
import torch
|
|
|
|
from torch.nn.parallel import DistributedDataParallel as DDP
|
|
|
|
from vit import get_training_components
|
|
|
|
|
|
|
|
import colossalai
|
2022-12-20 07:03:26 +00:00
|
|
|
from colossalai.context import ParallelMode
|
2022-11-14 09:28:03 +00:00
|
|
|
from colossalai.context.parallel_mode import ParallelMode
|
|
|
|
from colossalai.core import global_context as gpc
|
|
|
|
from colossalai.nn.parallel.data_parallel import ColoDDP
|
2022-12-20 07:03:26 +00:00
|
|
|
from colossalai.tensor import ComputePattern, ComputeSpec, DistSpecManager, ProcessGroup, ShardSpec
|
2023-04-06 06:51:35 +00:00
|
|
|
from colossalai.testing import rerun_if_address_is_in_use, spawn
|
2022-11-14 09:28:03 +00:00
|
|
|
from colossalai.utils.cuda import get_current_device
|
2023-04-04 05:48:16 +00:00
|
|
|
from colossalai.zero import ColoInitContext
|
2022-11-14 09:28:03 +00:00
|
|
|
|
|
|
|
|
2022-12-20 07:03:26 +00:00
|
|
|
def set_seed(seed):
|
|
|
|
random.seed(seed)
|
|
|
|
os.environ['PYTHONHASHSEED'] = str(seed)
|
|
|
|
np.random.seed(seed)
|
|
|
|
torch.manual_seed(seed)
|
|
|
|
torch.cuda.manual_seed(seed)
|
|
|
|
torch.backends.cudnn.deterministic = True
|
|
|
|
|
|
|
|
|
|
|
|
def tensor_equal(A, B):
|
|
|
|
return torch.allclose(A, B, rtol=1e-3, atol=1e-1)
|
|
|
|
|
|
|
|
|
|
|
|
def tensor_shard_equal(tensor: torch.Tensor, shard: torch.Tensor):
|
|
|
|
assert tensor.ndim == shard.ndim
|
|
|
|
if tensor.shape == shard.shape:
|
|
|
|
return tensor_equal(tensor, shard)
|
|
|
|
else:
|
|
|
|
dims_not_eq = torch.nonzero(torch.tensor(tensor.shape) != torch.tensor(shard.shape))
|
|
|
|
if dims_not_eq.numel() == 1:
|
|
|
|
# 1D shard
|
|
|
|
dim = dims_not_eq.item()
|
|
|
|
world_size = gpc.get_world_size(ParallelMode.PARALLEL_1D)
|
|
|
|
rank = gpc.get_local_rank(ParallelMode.PARALLEL_1D)
|
|
|
|
return tensor_equal(tensor.chunk(world_size, dim)[rank], shard)
|
|
|
|
else:
|
|
|
|
raise
|
|
|
|
|
|
|
|
|
2022-11-14 09:28:03 +00:00
|
|
|
# Only for all Linear, it's 1d_row split because Linear will be transposed when calculating.
|
|
|
|
# But for other layers, it's 1d_col split.
|
|
|
|
# Layernorm is not supported for now.
|
|
|
|
# patch_embeddings.projection has nn.Conv2d
|
|
|
|
# https://github.com/huggingface/transformers/blob/dcb08b99f44919425f8ba9be9ddcc041af8ec25e/src/transformers/models/vit/modeling_vit.py#L182
|
|
|
|
def init_1d_row_for_linear_weight_spec(model, world_size: int):
|
|
|
|
pg = ProcessGroup(tp_degree=world_size)
|
|
|
|
spec = (ShardSpec([-1], [pg.tp_world_size()]), ComputeSpec(ComputePattern.TP1D))
|
|
|
|
with DistSpecManager.no_grad():
|
|
|
|
for n, p in model.named_parameters():
|
|
|
|
if 'weight' in n and 'layernorm' not in n and 'embeddings.patch_embeddings.projection.weight' not in n:
|
|
|
|
p.set_process_group(pg)
|
|
|
|
p.set_tensor_spec(*spec)
|
|
|
|
|
|
|
|
|
|
|
|
# Similarly, it's col split for Linear but row split for others.
|
|
|
|
def init_1d_col_for_linear_weight_bias_spec(model, world_size: int):
|
|
|
|
pg = ProcessGroup(tp_degree=world_size)
|
|
|
|
spec = (ShardSpec([0], [pg.tp_world_size()]), ComputeSpec(ComputePattern.TP1D))
|
|
|
|
with DistSpecManager.no_grad():
|
|
|
|
for n, p in model.named_parameters():
|
|
|
|
if ('weight' in n
|
|
|
|
or 'bias' in n) and 'layernorm' not in n and 'embeddings.patch_embeddings.projection' not in n:
|
|
|
|
p.set_process_group(pg)
|
|
|
|
p.set_tensor_spec(*spec)
|
|
|
|
|
|
|
|
|
|
|
|
def check_param_equal(model, torch_model):
|
|
|
|
for p, torch_p in zip(model.parameters(), torch_model.parameters()):
|
|
|
|
assert tensor_shard_equal(torch_p, p)
|
|
|
|
|
|
|
|
|
|
|
|
def check_grad_equal(model, torch_model):
|
|
|
|
for p, torch_p in zip(model.parameters(), torch_model.parameters()):
|
|
|
|
if (torch_p.grad.shape == p.grad.shape):
|
|
|
|
assert torch.allclose(torch_p.grad, p.grad, rtol=1e-3, atol=2.0) == True
|
|
|
|
else:
|
|
|
|
dims_not_eq = torch.nonzero(torch.tensor(torch_p.grad.shape) != torch.tensor(p.grad.shape))
|
|
|
|
dim = dims_not_eq.item()
|
|
|
|
world_size = gpc.get_world_size(ParallelMode.PARALLEL_1D)
|
|
|
|
rank = gpc.get_local_rank(ParallelMode.PARALLEL_1D)
|
|
|
|
assert torch.allclose(torch_p.grad.chunk(world_size, dim)[rank], p.grad, rtol=1e-3, atol=2.0) == True
|
|
|
|
|
|
|
|
|
|
|
|
def run_vit(init_spec_func, use_ddp):
|
|
|
|
model_builder, train_dataloader, test_dataloader, optimizer_class, criterion = get_training_components()
|
|
|
|
with ColoInitContext(device=get_current_device()):
|
|
|
|
model = model_builder()
|
|
|
|
model = model.cuda()
|
|
|
|
torch_model = model_builder().cuda()
|
|
|
|
if use_ddp:
|
|
|
|
model = ColoDDP(model)
|
|
|
|
torch_model = DDP(torch_model,
|
|
|
|
device_ids=[gpc.get_global_rank()],
|
|
|
|
process_group=gpc.get_group(ParallelMode.DATA))
|
|
|
|
for torch_p, p in zip(torch_model.parameters(), model.parameters()):
|
|
|
|
torch_p.data.copy_(p)
|
|
|
|
|
|
|
|
world_size = torch.distributed.get_world_size()
|
|
|
|
init_spec_func(model, world_size)
|
|
|
|
|
|
|
|
check_param_equal(model, torch_model)
|
|
|
|
model.train()
|
|
|
|
torch_model.train()
|
|
|
|
set_seed(gpc.get_local_rank(ParallelMode.DATA))
|
|
|
|
|
|
|
|
optimizer = optimizer_class(model.parameters(), lr=0.001, betas=(0.9, 0.999), eps=1e-08, weight_decay=0)
|
|
|
|
torch_optimizer = optimizer_class(torch_model.parameters(), lr=0.001, betas=(0.9, 0.999), eps=1e-08, weight_decay=0)
|
|
|
|
|
|
|
|
for i, image_dict in enumerate(train_dataloader):
|
|
|
|
if use_ddp:
|
|
|
|
model.zero_grad()
|
|
|
|
else:
|
|
|
|
optimizer.zero_grad()
|
|
|
|
logits = model(image_dict['pixel_values'])
|
|
|
|
torch_logits = torch_model(image_dict['pixel_values'])
|
|
|
|
assert tensor_equal(torch_logits.logits, logits.logits)
|
|
|
|
loss = criterion(logits.logits, image_dict['label'])
|
|
|
|
torch_loss = criterion(torch_logits.logits, image_dict['label'])
|
|
|
|
if use_ddp:
|
|
|
|
model.backward(loss)
|
|
|
|
else:
|
|
|
|
loss.backward()
|
|
|
|
torch_loss.backward()
|
|
|
|
check_grad_equal(model, torch_model)
|
|
|
|
optimizer.step()
|
|
|
|
torch_optimizer.step()
|
|
|
|
check_param_equal(model, torch_model)
|
|
|
|
break
|
|
|
|
|
|
|
|
|
|
|
|
def run_dist(rank, world_size, port, use_ddp):
|
|
|
|
if use_ddp and world_size == 1:
|
|
|
|
return
|
|
|
|
tp_world_size = world_size // 2 if use_ddp else world_size
|
|
|
|
config = dict(parallel=dict(tensor=dict(mode="1d", size=tp_world_size),))
|
|
|
|
colossalai.launch(config=config, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
|
|
|
|
run_vit(init_1d_row_for_linear_weight_spec, use_ddp)
|
|
|
|
run_vit(init_1d_col_for_linear_weight_bias_spec, use_ddp)
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.dist
|
|
|
|
@pytest.mark.parametrize('world_size', [1, 4])
|
|
|
|
@pytest.mark.parametrize('use_ddp', [False, True])
|
|
|
|
@rerun_if_address_is_in_use()
|
|
|
|
def test_vit(world_size, use_ddp):
|
2023-04-06 06:51:35 +00:00
|
|
|
spawn(run_dist, world_size, use_ddp=use_ddp)
|
2022-11-14 09:28:03 +00:00
|
|
|
|
|
|
|
|
|
|
|
if __name__ == '__main__':
|
|
|
|
test_vit(1, False)
|