2023-03-01 08:34:58 +00:00
|
|
|
from typing import Optional
|
|
|
|
|
|
|
|
import torch
|
|
|
|
from torch.utils._pytree import tree_map
|
|
|
|
|
2023-03-14 08:25:47 +00:00
|
|
|
from .layout import Layout
|
|
|
|
from .layout_converter import LayoutConverter, to_global
|
|
|
|
from .sharding_spec import ShardingSpec
|
2023-03-01 08:34:58 +00:00
|
|
|
|
2023-03-14 08:25:47 +00:00
|
|
|
layout_converter = LayoutConverter()
|
2023-03-01 08:34:58 +00:00
|
|
|
|
|
|
|
|
|
|
|
class DTensor(torch.Tensor):
|
|
|
|
|
|
|
|
def __init__(self, local_tensor: torch.Tensor, dist_layout: Layout):
|
|
|
|
self.local_tensor = local_tensor
|
|
|
|
self.data_type = local_tensor.dtype
|
|
|
|
self.entire_shape = local_tensor.shape
|
|
|
|
self.dist_layout = dist_layout
|
|
|
|
self._apply_layout()
|
|
|
|
|
|
|
|
@staticmethod
|
|
|
|
def __new__(cls, local_tensor, layout):
|
|
|
|
return torch.Tensor._make_subclass(cls, local_tensor, local_tensor.requires_grad)
|
|
|
|
|
|
|
|
def __repr__(self):
|
|
|
|
return f"DTensor({self.to_global()}, {self.dist_layout})"
|
|
|
|
|
|
|
|
def __str__(self):
|
|
|
|
return self.__repr__()
|
|
|
|
|
|
|
|
def layout_convert(self, target_layout):
|
|
|
|
'''
|
|
|
|
Convert the layout of the tensor from source_spec to target_spec.
|
|
|
|
'''
|
2023-03-14 08:25:47 +00:00
|
|
|
self.local_tensor = layout_converter.apply(self.local_tensor, self.dist_layout, target_layout)
|
2023-03-01 08:34:58 +00:00
|
|
|
self.dist_layout = target_layout
|
|
|
|
|
|
|
|
def _apply_layout(self):
|
|
|
|
'''
|
|
|
|
Apply the layout to the local tensor during initializing process.
|
|
|
|
'''
|
2023-03-14 08:25:47 +00:00
|
|
|
source_spec = construct_default_sharding_spec(self.local_tensor)
|
|
|
|
source_layout = Layout(device_mesh=self.dist_layout.device_mesh,
|
|
|
|
device_type=self.dist_layout.device_type,
|
|
|
|
sharding_spec=source_spec,
|
|
|
|
entire_shape=self.entire_shape)
|
|
|
|
self.local_tensor = layout_converter.apply(self.local_tensor, source_layout, self.dist_layout)
|
2023-03-01 08:34:58 +00:00
|
|
|
|
|
|
|
@classmethod
|
|
|
|
def __torch_function__(cls, func, types, args=(), kwargs=None):
|
|
|
|
if kwargs is None:
|
|
|
|
kwargs = {}
|
|
|
|
|
|
|
|
def filter_arg(arg):
|
|
|
|
if isinstance(arg, DTensor):
|
|
|
|
return arg.local_tensor
|
|
|
|
else:
|
|
|
|
return arg
|
|
|
|
|
|
|
|
args = tree_map(filter_arg, args)
|
|
|
|
kwargs = tree_map(filter_arg, kwargs)
|
|
|
|
# if we want to convert the result into DTensor, we need to infer the layout of result from the layout of input tensors
|
|
|
|
# and op type.
|
|
|
|
|
|
|
|
return func(*args, **kwargs)
|
|
|
|
|
|
|
|
@property
|
|
|
|
def device_mesh(self):
|
|
|
|
'''
|
|
|
|
Return the device mesh of the tensor.
|
|
|
|
'''
|
|
|
|
return self.dist_layout.device_mesh
|
|
|
|
|
|
|
|
@property
|
|
|
|
def sharding_spec(self):
|
|
|
|
'''
|
|
|
|
Return the sharding specification of the tensor.
|
|
|
|
'''
|
|
|
|
return self.dist_layout.sharding_spec
|
|
|
|
|
|
|
|
def to(self, *args, **kwargs):
|
|
|
|
'''
|
|
|
|
Move the tensor to a new device or convert the tensor to a new dtype.
|
|
|
|
'''
|
|
|
|
self.local_tensor = self.local_tensor.to(*args, **kwargs)
|
|
|
|
self.data_type = self.local_tensor.dtype
|
|
|
|
self.dist_layout.device_type = self.local_tensor.device
|
|
|
|
# TODO: update the device mesh process groups or we should just cache
|
|
|
|
# both the cpu process groups and the cuda process groups?
|
|
|
|
return self
|
|
|
|
|
|
|
|
def to_local(self):
|
|
|
|
'''
|
|
|
|
Return the local tensor in this rank.
|
|
|
|
'''
|
|
|
|
return self.local_tensor
|
|
|
|
|
|
|
|
def to_global(self):
|
|
|
|
'''
|
|
|
|
Recover the global tensor from the distributed tensor.
|
|
|
|
|
|
|
|
Note: This function will all_gather the local tensor to the global tensor and it
|
|
|
|
will not change the layout of the DTensor. This function is mainly used for debugging or
|
|
|
|
check the correctness of the distributed tensor.
|
|
|
|
'''
|
2023-03-14 08:25:47 +00:00
|
|
|
return to_global(self.local_tensor, self.dist_layout)
|
2023-03-01 08:34:58 +00:00
|
|
|
|
|
|
|
|
|
|
|
def distribute_tensor(local_tensor: torch.Tensor, dist_layout: Layout) -> DTensor:
|
|
|
|
'''
|
|
|
|
Distribute the local tensor to the distributed tensor according to the dist_layout specified.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
local_tensor: tensor to be distributed.
|
|
|
|
dist_layout: the layout specification of the distributed tensor.
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
A 'DTensor' object.
|
|
|
|
'''
|
|
|
|
return DTensor(local_tensor, dist_layout)
|
|
|
|
|
|
|
|
|
|
|
|
def distribute_module(module: torch.nn.Module, partition_fn: Optional[callable] = None) -> torch.nn.Module:
|
|
|
|
'''
|
|
|
|
This function converts all the parameters in the module to DTensor(DParam).
|
|
|
|
|
|
|
|
Note: This function is subject to future change as the DParam has not been implemented yet.
|
|
|
|
'''
|
|
|
|
for name, param in module.named_parameters():
|
|
|
|
if param is not None and not isinstance(param, DTensor):
|
|
|
|
# TODO: we could convert the parameter to DParam here,
|
|
|
|
# the type of the parameter could be an optional argument.
|
|
|
|
setattr(module, name, torch.nn.Parameter(partition_fn(name, param.data)))
|
|
|
|
return module
|
|
|
|
|
|
|
|
|
2023-03-14 08:25:47 +00:00
|
|
|
def construct_default_sharding_spec(tensor: torch.Tensor,) -> ShardingSpec:
|
2023-03-01 08:34:58 +00:00
|
|
|
'''
|
|
|
|
Construct the default sharding specification for the tensor.
|
|
|
|
'''
|
2023-03-14 08:25:47 +00:00
|
|
|
return ShardingSpec(dim_size=tensor.dim(), dim_partition_dict={})
|