ColossalAI/examples/community/roberta/pretraining/utils/global_vars.py

131 lines
3.8 KiB
Python
Raw Normal View History

import time
import torch
from .WandbLog import TensorboardLog
_GLOBAL_TIMERS = None
_GLOBAL_TENSORBOARD_WRITER = None
def set_global_variables(launch_time, tensorboard_path):
_set_timers()
_set_tensorboard_writer(launch_time, tensorboard_path)
def _set_timers():
"""Initialize timers."""
global _GLOBAL_TIMERS
_ensure_var_is_not_initialized(_GLOBAL_TIMERS, 'timers')
_GLOBAL_TIMERS = Timers()
def _set_tensorboard_writer(launch_time, tensorboard_path):
"""Set tensorboard writer."""
global _GLOBAL_TENSORBOARD_WRITER
_ensure_var_is_not_initialized(_GLOBAL_TENSORBOARD_WRITER, 'tensorboard writer')
if torch.distributed.get_rank() == 0:
_GLOBAL_TENSORBOARD_WRITER = TensorboardLog(tensorboard_path + f'/{launch_time}', launch_time)
def get_timers():
"""Return timers."""
_ensure_var_is_initialized(_GLOBAL_TIMERS, 'timers')
return _GLOBAL_TIMERS
def get_tensorboard_writer():
"""Return tensorboard writer. It can be None so no need
to check if it is initialized."""
return _GLOBAL_TENSORBOARD_WRITER
def _ensure_var_is_initialized(var, name):
"""Make sure the input variable is not None."""
assert var is not None, '{} is not initialized.'.format(name)
def _ensure_var_is_not_initialized(var, name):
"""Make sure the input variable is not None."""
assert var is None, '{} is already initialized.'.format(name)
class _Timer:
"""Timer."""
def __init__(self, name):
self.name_ = name
self.elapsed_ = 0.0
self.started_ = False
self.start_time = time.time()
def start(self):
"""Start the timer."""
# assert not self.started_, 'timer has already been started'
torch.cuda.synchronize()
self.start_time = time.time()
self.started_ = True
def stop(self):
"""Stop the timer."""
assert self.started_, 'timer is not started'
torch.cuda.synchronize()
self.elapsed_ += (time.time() - self.start_time)
self.started_ = False
def reset(self):
"""Reset timer."""
self.elapsed_ = 0.0
self.started_ = False
def elapsed(self, reset=True):
"""Calculate the elapsed time."""
started_ = self.started_
# If the timing in progress, end it first.
if self.started_:
self.stop()
# Get the elapsed time.
elapsed_ = self.elapsed_
# Reset the elapsed time
if reset:
self.reset()
# If timing was in progress, set it back.
if started_:
self.start()
return elapsed_
class Timers:
"""Group of timers."""
def __init__(self):
self.timers = {}
def __call__(self, name):
if name not in self.timers:
self.timers[name] = _Timer(name)
return self.timers[name]
def write(self, names, writer, iteration, normalizer=1.0, reset=False):
"""Write timers to a tensorboard writer"""
# currently when using add_scalars,
# torch.utils.add_scalars makes each timer its own run, which
# pollutes the runs list, so we just add each as a scalar
assert normalizer > 0.0
for name in names:
value = self.timers[name].elapsed(reset=reset) / normalizer
writer.add_scalar(name + '-time', value, iteration)
def log(self, names, normalizer=1.0, reset=True):
"""Log a group of timers."""
assert normalizer > 0.0
string = 'time (ms)'
for name in names:
elapsed_time = self.timers[name].elapsed(reset=reset) * 1000.0 / normalizer
string += ' | {}: {:.2f}'.format(name, elapsed_time)
if torch.distributed.is_initialized():
if torch.distributed.get_rank() == (torch.distributed.get_world_size() - 1):
print(string, flush=True)
else:
print(string, flush=True)