You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
ColossalAI/colossalai/auto_parallel/tensor_shard/deprecated/sharding_strategy.py

92 lines
4.0 KiB

from copy import deepcopy
from dataclasses import dataclass
from abc import ABC, abstractmethod
from enum import Enum
import operator
import torch
from functools import reduce
from colossalai.device.device_mesh import DeviceMesh
from colossalai.tensor.sharding_spec import ShardingSpec
from colossalai.tensor.shape_consistency import CollectiveCommPattern, CommSpec
from typing import Dict, List, Union, Tuple, Any
from torch.fx.node import Node
from .constants import *
__all__ = ['ShardingStrategy', 'StrategiesVector']
@dataclass
class ShardingStrategy:
'''
ShardingStrategy is a structure containing sharding strategies of inputs and output of this node
and costs information using in solver.
Argument:
name(str): express the sharding strategies in string, such as 'S0S1 = S0R x RS1'.
output_sharding_spec(ShardingSpec): ShardingSpec of the output node.
compute_cost(float): Computation cost to complete this strategy.(default to 0)
communication_cost(float): Communication cost to complete this strategy.(default to 0)
memory_cost(float): Memory cost of the output node using this strategy.(default to 0)
resharding_costs(Dict[int, List[float]]): resharding_cost[i][j] means the cost of i-th argument in the output node argument list
with j-th strategy in its strategies_vector transforms to sharding spec wanted in this
strategy.(default to None)
input_shardings(List(ShardingSpec)): The ShardingSpecs of the input nodes.
'''
name: str
# TODO: output of fx node,such as torch.var_mean, could be a tuple, so we cannot simply suppose it is a tensor.
output_sharding_spec: Union[ShardingSpec, Tuple[ShardingSpec]]
compute_cost: float = 0.
communication_cost: float = 0.
memory_cost: float = 0.
resharding_costs: Dict[Node, List[float]] = None
# sometimes the input node could be a tuple of nodes, but most of op won't accept tuple of node as input.
# Therefore, we could process them at the specific op(operator.getitem)
input_shardings: List[ShardingSpec] = None
class StrategiesVector(list):
'''
Each node in fx graph will have a corresponding StrategiesVector, to store all the possible
strategies of the node.
Argument:
node (Node): node for which the list of sharding strategies are generated.
'''
def __init__(self, node: Node):
super().__init__()
self.node = node
# fetch its input and output nodes
# TODO: placeholder input nodes
self.predecessor_nodes = list(node._input_nodes.keys())
if self.node.op == 'output':
self.predecessor_nodes = list(node._input_nodes.keys())[:1]
self.successor_nodes = list(node.users.keys())
def check_merge(self):
merge_label = False
if self.node.op == 'call_module':
target = self.node.target
root_module = self.node.graph.owning_module
submod = root_module.get_submodule(target)
submod_type = type(submod)
# merge elementwise module node into source nodes
# we could merge element-wise op, because the output sharding spec is always same as the input sharding spec.
if submod_type in ELEMENTWISE_MODULE_OP:
merge_label = True
if self.node.op == 'call_function':
# we could merge element-wise op, because the output sharding spec is always same as the input sharding spec.
if self.node.target in ELEMENTWISE_FUNC_OP:
merge_label = True
# we could merge bcast op if the rhs is a scalar, because it will fall back to the element-wise case.
if self.node.target in BCAST_FUNC_OP and len(self.predecessor_nodes) == 1:
merge_label = True
# we could merge reshape op, because the output sharding spec of reshape op is always fully replicated.
if self.node.target in RESHAPE_FUNC_OP:
merge_label = True
return merge_label