2022-11-11 01:26:40 +00:00
|
|
|
from torch._utils import _flatten_dense_tensors, _unflatten_dense_tensors
|
|
|
|
|
|
|
|
|
|
|
|
class TensorBucket:
|
|
|
|
def __init__(self, size):
|
|
|
|
self._max_size = size
|
|
|
|
self._current_size = 0
|
|
|
|
self._bucket = []
|
|
|
|
|
|
|
|
@property
|
|
|
|
def max_size(self):
|
|
|
|
return self._max_size
|
|
|
|
|
|
|
|
@property
|
|
|
|
def current_size(self):
|
|
|
|
return self._current_size
|
|
|
|
|
|
|
|
def is_full_or_oversized(self):
|
|
|
|
return self._current_size >= self._max_size
|
|
|
|
|
|
|
|
def is_empty(self):
|
|
|
|
return len(self._bucket) == 0
|
|
|
|
|
|
|
|
def add_to_bucket(self, tensor, allow_oversize=False):
|
|
|
|
tensor_size = tensor.numel()
|
|
|
|
|
|
|
|
if not allow_oversize and self.will_exceed_max_size(tensor_size):
|
2023-09-19 06:20:26 +00:00
|
|
|
msg = f"The param bucket max size {self._max_size} is exceeded" + f"by tensor (size {tensor_size})"
|
2022-11-11 01:26:40 +00:00
|
|
|
raise RuntimeError(msg)
|
|
|
|
|
|
|
|
self._bucket.append(tensor)
|
|
|
|
self._current_size += tensor_size
|
|
|
|
|
|
|
|
def will_exceed_max_size(self, tensor_size):
|
|
|
|
expected_size = self._current_size + tensor_size
|
|
|
|
return expected_size > self._max_size
|
|
|
|
|
|
|
|
def get_bucket(self):
|
|
|
|
return self._bucket
|
|
|
|
|
|
|
|
def empty(self):
|
|
|
|
self._bucket = []
|
|
|
|
self._size = 0
|
|
|
|
|
|
|
|
def flatten(self):
|
|
|
|
return _flatten_dense_tensors(self._bucket)
|
|
|
|
|
|
|
|
def unflatten_and_copy(self, flat_tensor):
|
|
|
|
unflattened_tensor_list = _unflatten_dense_tensors(flat_tensor, self._bucket)
|
|
|
|
for old, new in zip(self._bucket, unflattened_tensor_list):
|
|
|
|
old.copy_(new)
|