ColossalAI/colossalai/legacy/inference/dynamic_batching/stats.py

46 lines
1.5 KiB
Python
Raw Normal View History

[Inference] Dynamic Batching Inference, online and offline (#4953) * [inference] Dynamic Batching for Single and Multiple GPUs (#4831) * finish batch manager * 1 * first * fix * fix dynamic batching * llama infer * finish test * support different lengths generating * del prints * del prints * fix * fix bug --------- Co-authored-by: CjhHa1 <cjh18671720497outlook.com> * [inference] Async dynamic batching (#4894) * finish input and output logic * add generate * test forward * 1 * [inference]Re push async dynamic batching (#4901) * adapt to ray server * finish async * finish test * del test --------- Co-authored-by: yuehuayingxueluo <867460659@qq.com> * Revert "[inference]Re push async dynamic batching (#4901)" (#4905) This reverts commit fbf3c09e673794ed18c91d4bab1a7dfea052e95a. * Revert "[inference] Async dynamic batching (#4894)" This reverts commit fced14025043e29ce816b315f440601188f7f79f. * Revert "[inference] Async dynamic batching (#4894)" (#4909) This reverts commit fced14025043e29ce816b315f440601188f7f79f. * Add Ray Distributed Environment Init Scripts * support DynamicBatchManager base function * revert _set_tokenizer version * add driver async generate * add async test * fix bugs in test_ray_dist.py * add get_tokenizer.py * fix code style * fix bugs about No module named 'pydantic' in ci test * fix bugs in ci test * fix bugs in ci test * fix bugs in ci test * [infer]Add Ray Distributed Environment Init Scripts (#4911) * Revert "[inference] Async dynamic batching (#4894)" This reverts commit fced14025043e29ce816b315f440601188f7f79f. * Add Ray Distributed Environment Init Scripts * support DynamicBatchManager base function * revert _set_tokenizer version * add driver async generate * add async test * fix bugs in test_ray_dist.py * add get_tokenizer.py * fix code style * fix bugs about No module named 'pydantic' in ci test * fix bugs in ci test * fix bugs in ci test * fix bugs in ci test * support dynamic batch for bloom model and is_running function * [Inference]Test for new Async engine (#4935) * infer engine * infer engine * test engine * test engine * new manager * change step * add * test * fix * fix * finish test * finish test * finish test * finish test * add license --------- Co-authored-by: yuehuayingxueluo <867460659@qq.com> * add assertion for config (#4947) * [Inference] Finish dynamic batching offline test (#4948) * test * fix test * fix quant * add default * fix * fix some bugs * fix some bugs * fix * fix bug * fix bugs * reset param --------- Co-authored-by: yuehuayingxueluo <867460659@qq.com> Co-authored-by: Cuiqing Li <lixx3527@gmail.com> Co-authored-by: CjhHa1 <cjh18671720497outlook.com>
2023-10-30 02:52:19 +00:00
# Adapted from https://github.com/ModelTC/lightllm
import time
class Stats:
def __init__(self, log_status, log_stats_interval) -> None:
self.log_stats = log_status
self.log_stats_interval = log_stats_interval
self.last_log_time = time.time()
self.all_tokens = 0
self.output_tokens = 0
self.prompt_tokens = 0
return
def count_prompt_tokens(self, run_batch):
if self.log_stats:
tokens = run_batch.input_tokens()
self.prompt_tokens += tokens
self.all_tokens += tokens
return
def count_output_tokens(self, run_batch):
if self.log_stats:
tokens = len(run_batch.reqs)
self.output_tokens += tokens
self.all_tokens += tokens
return
def print_stats(self):
if not self.log_stats:
return
now = time.time()
if now - self.last_log_time > self.log_stats_interval:
print(
f"Avg tokens(prompt+generate) throughput: {self.all_tokens/(now-self.last_log_time):8.3f} tokens/s\n"
f"Avg prompt tokens throughput: {self.prompt_tokens/(now-self.last_log_time):8.3f} tokens/s\n"
f"Avg generate tokens throughput: {self.output_tokens/(now-self.last_log_time):8.3f} tokens/s"
)
self.all_tokens = 0
self.output_tokens = 0
self.prompt_tokens = 0
self.last_log_time = now
return