ColossalAI/colossalai/kernel/triton/context_attn_unpad.py

264 lines
9.1 KiB
Python
Raw Normal View History

# Applying the FlashAttention V2 as described in:
# "FlashAttention-2: Faster Attention with Better Parallelism and Work Partitioning"
# by Tri Dao, 2023
# https://github.com/Dao-AILab/flash-attention
#
# Inspired and modified from Triton Tutorial - Fused Attention
# https://triton-lang.org/main/getting-started/tutorials/06-fused-attention.html
from typing import Optional
import torch
import triton
import triton.language as tl
# Triton 2.1.0
@triton.jit
def _fwd_context_paged_attention_kernel(
Q,
K,
V,
O,
KCache,
VCache,
BLOCK_TABLES, # [num_seqs, max_blocks_per_sequence]
batch_size,
stride_qt,
stride_qh,
stride_qd,
stride_kt,
stride_kh,
stride_kd,
stride_vt,
stride_vh,
stride_vd,
stride_ot,
stride_oh,
stride_od,
stride_cacheb,
stride_cacheh,
stride_cached,
stride_cachebs,
stride_bts,
stride_btb,
context_lengths,
sm_scale,
KV_GROUPS: tl.constexpr,
BLOCK_SIZE: tl.constexpr,
HEAD_DIM: tl.constexpr,
BLOCK_M: tl.constexpr,
BLOCK_N: tl.constexpr,
):
cur_seq_idx = tl.program_id(0)
if cur_seq_idx >= batch_size:
return
cur_head_idx = tl.program_id(1)
block_start_m = tl.program_id(2) # Br, max_input_len // Block_M
cur_kv_head_idx = cur_head_idx // KV_GROUPS
# NOTE It requires BLOCK_M, BLOCK_N, and BLOCK_SIZE to be the same
tl.static_assert(BLOCK_M == BLOCK_N)
tl.static_assert(BLOCK_N == BLOCK_SIZE)
# get the current sequence length from provided context lengths tensor
cur_seq_len = tl.load(context_lengths + cur_seq_idx)
# NOTE when talking to fused QKV and a nopadding context attention,
# we assume that the input Q/K/V is contiguous, and thus here `prev_seq_len_sum`
# could be considered as the start index of the current sequence.
# FIXME might want to explore better way to get the summation of prev seq lengths.
# `tl.sum(tensor[:end])` is invalid as tensor slice is not supported in triton.
prev_seq_len_sum = 0
for i in range(0, cur_seq_idx):
prev_seq_len_sum += tl.load(context_lengths + i)
offset_q = prev_seq_len_sum * stride_qt + cur_head_idx * stride_qh
offset_kv = prev_seq_len_sum * stride_kt + cur_kv_head_idx * stride_kh
Q_block_ptr = tl.make_block_ptr(
base=Q + offset_q,
shape=(cur_seq_len, HEAD_DIM),
strides=(stride_qt, stride_qd),
offsets=(block_start_m * BLOCK_M, 0),
block_shape=(BLOCK_M, HEAD_DIM),
order=(1, 0),
)
K_block_ptr = tl.make_block_ptr(
base=K + offset_kv,
shape=(HEAD_DIM, cur_seq_len),
strides=(stride_kd, stride_kt),
offsets=(0, 0),
block_shape=(HEAD_DIM, BLOCK_N),
order=(0, 1),
)
V_block_ptr = tl.make_block_ptr(
base=V + offset_kv,
shape=(cur_seq_len, HEAD_DIM),
strides=(stride_vt, stride_vd),
offsets=(0, 0),
block_shape=(BLOCK_N, HEAD_DIM),
order=(1, 0),
)
O_block_ptr = tl.make_block_ptr(
base=O + offset_q,
shape=(cur_seq_len, HEAD_DIM),
strides=(stride_ot, stride_od),
offsets=(block_start_m * BLOCK_M, 0),
block_shape=(BLOCK_M, HEAD_DIM),
order=(1, 0),
)
# block table for the current sequence
block_table_ptr = BLOCK_TABLES + cur_seq_idx * stride_bts
# block indexes on block table (i.e. 0, 1, 2, ..., max_blocks_per_seq)
# Consider `block_start_m` as the logical block idx in the current block table,
# as we have BLOCK_M the same size as the block size.
cur_block_table_idx = block_start_m
cur_block_id = tl.load(block_table_ptr + cur_block_table_idx * stride_btb)
offset_kvcache = cur_block_id * stride_cacheb + cur_kv_head_idx * stride_cacheh
offsets_m = block_start_m * BLOCK_M + tl.arange(0, BLOCK_M)
offsets_n = tl.arange(0, BLOCK_N)
m_i = tl.full([BLOCK_M], float("-inf"), dtype=tl.float32)
l_i = tl.zeros([BLOCK_M], dtype=tl.float32)
acc = tl.zeros([BLOCK_M, HEAD_DIM], dtype=tl.float32)
if block_start_m * BLOCK_M >= cur_seq_len:
return
Q_i = tl.load(Q_block_ptr, boundary_check=(1, 0))
for block_start_n in range(0, (block_start_m + 1) * BLOCK_M, BLOCK_N):
block_start_n = tl.multiple_of(block_start_n, BLOCK_N)
k = tl.load(K_block_ptr, boundary_check=(0, 1))
S_ij = tl.zeros([BLOCK_M, BLOCK_N], dtype=tl.float32)
S_ij += tl.dot(Q_i, k)
S_ij *= sm_scale
S_ij += tl.where(offsets_m[:, None] >= (block_start_n + offsets_n[None, :]), 0, float("-inf"))
m_ij = tl.max(S_ij, 1) # rowmax(Sij)
m_ij = tl.maximum(m_i, m_ij) # m_ij
S_ij -= m_ij[:, None]
p_ij_hat = tl.exp(S_ij)
scale = tl.exp(m_i - m_ij)
l_ij = scale * l_i + tl.sum(p_ij_hat, 1)
acc = acc * scale[:, None]
v = tl.load(V_block_ptr, boundary_check=(1, 0))
p_ij_hat = p_ij_hat.to(v.type.element_ty)
acc += tl.dot(p_ij_hat, v)
l_i = l_ij
m_i = m_ij
K_block_ptr = tl.advance(K_block_ptr, (0, BLOCK_N))
V_block_ptr = tl.advance(V_block_ptr, (BLOCK_N, 0))
acc = acc / l_i[:, None]
tl.store(O_block_ptr, acc.to(O.type.element_ty), boundary_check=(1, 0))
if cur_head_idx % KV_GROUPS == 0:
# Copy k to corresponding cache block
offsets_dmodel = tl.arange(0, HEAD_DIM)
offsets_kt = block_start_m * BLOCK_M + tl.arange(0, BLOCK_M)
offsets_k = K + offset_kv + offsets_dmodel[:, None] * stride_kd + offsets_kt[None, :] * stride_kt
k = tl.load(offsets_k, mask=offsets_kt[None, :] < cur_seq_len, other=0.0)
offsets_kcachebs = tl.arange(0, BLOCK_SIZE)
offsets_kcache = (
KCache
+ offset_kvcache
+ offsets_dmodel[:, None] * stride_cached
+ offsets_kcachebs[None, :] * stride_cachebs
)
tl.store(offsets_kcache, k, mask=offsets_kcachebs[None, :] < cur_seq_len - block_start_m * BLOCK_SIZE)
# Copy v to corresponding cache block
offsets_vd = offsets_dmodel
offsets_vt = block_start_m * BLOCK_N + tl.arange(0, BLOCK_N)
offsets_v = V + offset_kv + offsets_vt[:, None] * stride_vt + offsets_vd[None, :] * stride_vd
v = tl.load(offsets_v, mask=offsets_vt[:, None] < cur_seq_len, other=0.0)
offsets_vcachebs = offsets_kcachebs # same block size range, just to notify here
offsets_vcache = (
VCache
+ offset_kvcache
+ offsets_vcachebs[:, None] * stride_cachebs
+ offsets_dmodel[None, :] * stride_cached
)
tl.store(offsets_vcache, v, mask=offsets_vcachebs[:, None] < cur_seq_len - block_start_m * BLOCK_SIZE)
return
def context_attention_unpadded(
q: torch.Tensor, # [num_tokens, num_heads, head_dim]
k: torch.Tensor, # [num_tokens, num_kv_heads, head_dim]
v: torch.Tensor, # [num_tokens, num_kv_heads, head_dim]
k_cache: torch.Tensor, # [num_blocks, num_kv_heads, head_dim, block_size]
v_cache: torch.Tensor, # [num_blocks, num_kv_heads, head_dim, block_size]
context_lengths: torch.Tensor, # [num_seqs]
block_tables: torch.Tensor, # [num_seqs, max_blocks_per_sequence],
block_size: int,
max_seq_len_in_b: Optional[int] = None,
):
Lq, Lk, Lv = q.shape[-1], k.shape[-1], v.shape[-1]
assert Lq == Lk == Lv
assert Lk in {32, 64, 128, 256}
assert q.shape[0] == k.shape[0] == v.shape[0]
assert k_cache.shape == v_cache.shape
assert context_lengths.shape[0] == block_tables.shape[0]
num_tokens, num_heads, _ = q.shape
num_kv_heads = k.shape[-2]
assert num_kv_heads > 0 and num_heads % num_kv_heads == 0
num_kv_group = num_heads // num_kv_heads
num_seqs, max_blocks_per_seq = block_tables.shape
max_seq_len = context_lengths.max().item() if max_seq_len_in_b is None else max_seq_len_in_b
sm_scale = 1.0 / (Lq**0.5)
output = torch.zeros_like(q)
# NOTE For now, BLOCK_M and BLOCK_N are supposed to be equivalent with
# the size of physical cache block (i.e. `block_size`)
assert block_size in {16, 32, 64, 128}
BLOCK_M = BLOCK_N = block_size
# NOTE use `triton.next_power_of_2` here to utilize the cache mechanism of triton
# To optimize, revise batching/scheduling to batch 2^n sequences in a batch (preferred)
grid = (triton.next_power_of_2(num_seqs), num_heads, triton.cdiv(max_seq_len, BLOCK_M))
_fwd_context_paged_attention_kernel[grid](
q,
k,
v,
output,
k_cache,
v_cache,
block_tables,
num_seqs,
q.stride(0),
q.stride(1),
q.stride(2),
k.stride(0),
k.stride(1),
k.stride(2),
v.stride(0),
v.stride(1),
v.stride(2),
output.stride(0),
output.stride(1),
output.stride(2),
k_cache.stride(0),
k_cache.stride(1),
k_cache.stride(2),
k_cache.stride(3),
block_tables.stride(0),
block_tables.stride(1),
context_lengths,
sm_scale,
num_kv_group,
block_size,
HEAD_DIM=Lk,
BLOCK_M=BLOCK_M,
BLOCK_N=BLOCK_N,
)
return output