mirror of https://github.com/hpcaitech/ColossalAI
49 lines
1.4 KiB
Python
49 lines
1.4 KiB
Python
|
import pytest
|
||
|
import colossalai
|
||
|
import torch
|
||
|
import torch.multiprocessing as mp
|
||
|
from colossalai.testing import rerun_if_address_is_in_use
|
||
|
from colossalai.utils.cuda import get_current_device
|
||
|
from colossalai.utils import free_port
|
||
|
from functools import partial
|
||
|
from colossalai.nn.parallel.reducer import Reducer
|
||
|
import torch.distributed as dist
|
||
|
from torch.distributed.distributed_c10d import _get_default_group
|
||
|
|
||
|
REDUCE_CNT = 0
|
||
|
|
||
|
|
||
|
def check_eq(grad, grad_clone):
|
||
|
global REDUCE_CNT
|
||
|
print(f'Rank{dist.get_rank()} check {REDUCE_CNT}')
|
||
|
REDUCE_CNT += 1
|
||
|
assert torch.allclose(grad, grad_clone)
|
||
|
|
||
|
|
||
|
def run_reducer():
|
||
|
grads = [torch.rand(64, i + 1, device=get_current_device()) for i in range(10)]
|
||
|
grads_clone = [g.clone().detach() for g in grads]
|
||
|
for g in grads:
|
||
|
dist.all_reduce(g)
|
||
|
reducer = Reducer(bucket_size_mb=1)
|
||
|
for g, g_clone in zip(grads, grads_clone):
|
||
|
reducer.all_reduce_async(g_clone, _get_default_group(), partial(check_eq, g))
|
||
|
reducer.flush()
|
||
|
|
||
|
|
||
|
def run_dist(rank, world_size, port):
|
||
|
colossalai.launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
|
||
|
run_reducer()
|
||
|
|
||
|
|
||
|
@pytest.mark.dist
|
||
|
@pytest.mark.parametrize('world_size', [1, 2])
|
||
|
@rerun_if_address_is_in_use()
|
||
|
def test_reducer(world_size):
|
||
|
run_func = partial(run_dist, world_size=world_size, port=free_port())
|
||
|
mp.spawn(run_func, nprocs=world_size)
|
||
|
|
||
|
|
||
|
if __name__ == '__main__':
|
||
|
test_reducer(2)
|