mirror of https://github.com/hpcaitech/ColossalAI
102 lines
4.5 KiB
Python
102 lines
4.5 KiB
Python
|
# MIT License
|
||
|
|
||
|
# Copyright (c) 2022 Ming Zhong
|
||
|
|
||
|
# Permission is hereby granted, free of charge, to any person obtaining a copy
|
||
|
# of this software and associated documentation files (the "Software"), to deal
|
||
|
# in the Software without restriction, including without limitation the rights
|
||
|
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
||
|
# copies of the Software, and to permit persons to whom the Software is
|
||
|
# furnished to do so, subject to the following conditions:
|
||
|
|
||
|
# The above copyright notice and this permission notice shall be included in all
|
||
|
# copies or substantial portions of the Software.
|
||
|
|
||
|
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||
|
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||
|
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||
|
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||
|
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
||
|
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
||
|
# SOFTWARE.
|
||
|
|
||
|
import torch
|
||
|
import torch.nn as nn
|
||
|
from tqdm import tqdm
|
||
|
from transformers import AutoConfig, AutoModelForSeq2SeqLM, AutoTokenizer
|
||
|
|
||
|
|
||
|
class UniEvaluator:
|
||
|
|
||
|
def __init__(self, model_name_or_path, max_length=1024, device='cuda:0', cache_dir=None):
|
||
|
""" Set up model """
|
||
|
self.device = device
|
||
|
self.max_length = max_length
|
||
|
|
||
|
self.config = AutoConfig.from_pretrained(model_name_or_path, cache_dir=cache_dir)
|
||
|
self.tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, cache_dir=cache_dir)
|
||
|
self.model = AutoModelForSeq2SeqLM.from_pretrained(model_name_or_path, config=self.config, cache_dir=cache_dir)
|
||
|
|
||
|
self.model.eval()
|
||
|
self.model.to(device)
|
||
|
|
||
|
self.softmax = nn.Softmax(dim=1)
|
||
|
|
||
|
self.pos_id = self.tokenizer("Yes")["input_ids"][0]
|
||
|
self.neg_id = self.tokenizer("No")["input_ids"][0]
|
||
|
|
||
|
def score(self, inputs, task, category, dim, batch_size=8):
|
||
|
"""
|
||
|
Get scores for the given samples.
|
||
|
final_score = postive_score / (postive_score + negative_score)
|
||
|
"""
|
||
|
|
||
|
# The implementation of "forward" in T5 still requires decoder_input_ids.
|
||
|
# Therefore, we construct a random one-word target sequence.
|
||
|
# The content of the target has no effect on the final scores.
|
||
|
tgts = ["No" for _ in range(len(inputs))]
|
||
|
|
||
|
pos_score_list, neg_score_list = [], []
|
||
|
for i in tqdm(range(0, len(inputs), batch_size), desc=f"{category}-({dim}-{task}): "):
|
||
|
src_list = inputs[i:i + batch_size]
|
||
|
tgt_list = tgts[i:i + batch_size]
|
||
|
try:
|
||
|
with torch.no_grad():
|
||
|
encoded_src = self.tokenizer(src_list,
|
||
|
max_length=self.max_length,
|
||
|
truncation=True,
|
||
|
padding=True,
|
||
|
return_tensors='pt')
|
||
|
encoded_tgt = self.tokenizer(tgt_list,
|
||
|
max_length=self.max_length,
|
||
|
truncation=True,
|
||
|
padding=True,
|
||
|
return_tensors='pt')
|
||
|
|
||
|
src_tokens = encoded_src['input_ids'].to(self.device)
|
||
|
src_mask = encoded_src['attention_mask'].to(self.device)
|
||
|
|
||
|
tgt_tokens = encoded_tgt['input_ids'].to(self.device)[:, 0].unsqueeze(-1)
|
||
|
|
||
|
output = self.model(input_ids=src_tokens, attention_mask=src_mask, labels=tgt_tokens)
|
||
|
logits = output.logits.view(-1, self.model.config.vocab_size)
|
||
|
|
||
|
pos_score = self.softmax(logits)[:, self.pos_id] # Yes
|
||
|
neg_score = self.softmax(logits)[:, self.neg_id] # No
|
||
|
|
||
|
cur_pos_score = [x.item() for x in pos_score]
|
||
|
cur_neg_score = [x.item() for x in neg_score]
|
||
|
pos_score_list += cur_pos_score
|
||
|
neg_score_list += cur_neg_score
|
||
|
|
||
|
except RuntimeError:
|
||
|
print(f'source: {src_list}')
|
||
|
print(f'target: {tgt_list}')
|
||
|
exit(0)
|
||
|
|
||
|
score_list = []
|
||
|
for i in range(len(pos_score_list)):
|
||
|
score_list.append(pos_score_list[i] / (pos_score_list[i] + neg_score_list[i]))
|
||
|
|
||
|
return score_list
|