mirror of https://github.com/hpcaitech/ColossalAI
109 lines
3.0 KiB
Python
109 lines
3.0 KiB
Python
|
from concurrent.futures import ThreadPoolExecutor
|
||
|
from time import sleep, time
|
||
|
import pickle
|
||
|
|
||
|
from colossalai.utils import get_current_device
|
||
|
import torch
|
||
|
|
||
|
|
||
|
def _get_cuda_memory_used(device: torch.device) -> int:
|
||
|
"""
|
||
|
Get the free memory info of device.
|
||
|
:param device: device id
|
||
|
:type device: torch.device
|
||
|
:return: current memory usage, sized by MB
|
||
|
:rtype: int
|
||
|
"""
|
||
|
|
||
|
assert device.type == 'cuda'
|
||
|
|
||
|
ret: int = torch.cuda.memory_allocated(device)
|
||
|
# get the peak memory to report correct data, so reset the counter for the next call
|
||
|
if hasattr(torch.cuda, "reset_peak_memory_stats"): # pytorch 1.4+
|
||
|
torch.cuda.reset_peak_memory_stats(device)
|
||
|
return ret
|
||
|
|
||
|
|
||
|
class AsyncMemoryMonitor:
|
||
|
"""
|
||
|
An Async Memory Monitor runing during computing. Sampling memory usage of the current GPU
|
||
|
at interval of 1/(10**power) sec.
|
||
|
|
||
|
:param power: the power of time interval, defaults to 10
|
||
|
:type power: int
|
||
|
|
||
|
Usage:
|
||
|
|
||
|
```python
|
||
|
async_mem_monitor = AsyncMemoryMonitor()
|
||
|
input = torch.randn(2, 20).cuda()
|
||
|
OP1 = torch.nn.Linear(20, 30).cuda()
|
||
|
OP2 = torch.nn.Linear(30, 40).cuda()
|
||
|
|
||
|
async_mem_monitor.start()
|
||
|
output = OP1(input)
|
||
|
async_mem_monitor.finish()
|
||
|
async_mem_monitor.start()
|
||
|
output = OP2(output)
|
||
|
async_mem_monitor.finish()
|
||
|
async_mem_monitor.save('log.pkl')
|
||
|
```
|
||
|
"""
|
||
|
|
||
|
def __init__(self, power: int = 10):
|
||
|
self.keep_measuring = False
|
||
|
self.executor = ThreadPoolExecutor(max_workers=1)
|
||
|
self.monitor_thread = None
|
||
|
self.interval = 1 / (10**power)
|
||
|
self.time_stamps = []
|
||
|
self.mem_stats = []
|
||
|
|
||
|
def __len__(self):
|
||
|
return len(self.mem_stats)
|
||
|
|
||
|
def set_interval(self, power: int):
|
||
|
self.clear()
|
||
|
self.interval = 1 / (10**power)
|
||
|
|
||
|
def is_measuring(self):
|
||
|
return self.keep_measuring
|
||
|
|
||
|
def start(self):
|
||
|
self.keep_measuring = True
|
||
|
self.monitor_thread = self.executor.submit(self._measure_usage)
|
||
|
|
||
|
def finish(self):
|
||
|
if self.keep_measuring is False:
|
||
|
return 0
|
||
|
self.keep_measuring = False
|
||
|
max_usage = self.monitor_thread.result()
|
||
|
self.monitor_thread = None
|
||
|
self.time_stamps.append(time())
|
||
|
self.mem_stats.append(max_usage)
|
||
|
return max_usage
|
||
|
|
||
|
def _measure_usage(self):
|
||
|
max_usage = 0
|
||
|
while self.keep_measuring:
|
||
|
max_usage = max(
|
||
|
max_usage,
|
||
|
_get_cuda_memory_used(torch.device(f'cuda:{get_current_device()}')),
|
||
|
)
|
||
|
sleep(self.interval)
|
||
|
return max_usage
|
||
|
|
||
|
def state_dict(self):
|
||
|
return {
|
||
|
"time_stamps": self.time_stamps,
|
||
|
"mem_stats": self.mem_stats,
|
||
|
}
|
||
|
|
||
|
def save(self, filename):
|
||
|
with open(filename, "wb") as f:
|
||
|
print(self.state_dict())
|
||
|
pickle.dump(self.state_dict(), f)
|
||
|
|
||
|
def clear(self):
|
||
|
self.mem_stats.clear()
|
||
|
self.time_stamps.clear()
|