ColossalAI/colossalai/nn/lr_scheduler/linear.py

31 lines
1.2 KiB
Python
Raw Normal View History

2021-10-28 16:21:23 +00:00
from torch.optim.lr_scheduler import _LRScheduler
from colossalai.registry import LR_SCHEDULERS
@LR_SCHEDULERS.register_module
class LinearWarmupLR(_LRScheduler):
"""Linearly warmup learning rate and then linearly decay
:param optimizer: Wrapped optimizer
:type optimizer: torch.optim.Optimizer
2022-01-21 02:44:30 +00:00
:param total_steps: Number of total training steps
2021-10-28 16:21:23 +00:00
:type total_steps: int
2022-01-21 02:44:30 +00:00
:param warmup_steps: Number of warmup steps, defaults to 0
2021-10-28 16:21:23 +00:00
:type warmup_steps: int, optional
:param last_epoch: The index of last epoch, defaults to -1
:type last_epoch: int, optional
"""
def __init__(self, optimizer, total_steps: int, warmup_steps: int = 0, last_epoch: int = -1, **kwargs):
self.warmup_steps = warmup_steps
self.total_steps = total_steps
super().__init__(optimizer, last_epoch=last_epoch)
def get_lr(self):
if self.last_epoch < self.warmup_steps:
return [(self.last_epoch + 1) / (self.warmup_steps + 1) * lr for lr in self.base_lrs]
else:
return [(self.total_steps - self.last_epoch) / (self.total_steps - self.warmup_steps) * lr for lr in
self.base_lrs]