|
|
|
from dataclasses import asdict
|
|
|
|
from typing import Any, Dict, List, NamedTuple, Tuple
|
|
|
|
|
|
|
|
import torch
|
|
|
|
import torch.fx
|
|
|
|
from torch.fx.node import Argument, Node, Target
|
|
|
|
from torch.utils._pytree import tree_map
|
|
|
|
|
|
|
|
from colossalai.fx._compatibility import compatibility, is_compatible_with_meta
|
|
|
|
from colossalai.fx.profiler import (
|
|
|
|
GraphInfo,
|
|
|
|
activation_size,
|
|
|
|
calculate_fwd_in,
|
|
|
|
calculate_fwd_out,
|
|
|
|
calculate_fwd_tmp,
|
|
|
|
profile_function,
|
|
|
|
profile_method,
|
|
|
|
profile_module,
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
@compatibility(is_backward_compatible=True)
|
|
|
|
class TensorMetadata(NamedTuple):
|
|
|
|
# TensorMetadata is a structure containing pertinent information
|
|
|
|
# about a tensor within a PyTorch program.
|
|
|
|
|
|
|
|
shape: torch.Size
|
|
|
|
dtype: torch.dtype
|
|
|
|
requires_grad: bool
|
|
|
|
stride: Tuple[int]
|
|
|
|
numel: int
|
|
|
|
is_tensor: bool
|
|
|
|
# TODO: we can add a list of sharding spec here, and record the sharding
|
|
|
|
# behavior by appending sharding spec into list.
|
|
|
|
|
|
|
|
|
|
|
|
def _extract_tensor_metadata(result: torch.Tensor) -> TensorMetadata:
|
|
|
|
"""
|
|
|
|
Extract a TensorMetadata NamedTuple describing `result`.
|
|
|
|
"""
|
|
|
|
shape = result.shape
|
|
|
|
dtype = result.dtype
|
|
|
|
requires_grad = result.requires_grad
|
|
|
|
stride = result.stride()
|
|
|
|
numel = result.numel()
|
|
|
|
is_tensor = True
|
|
|
|
|
|
|
|
return TensorMetadata(shape, dtype, requires_grad, stride, numel, is_tensor)
|
|
|
|
|
|
|
|
|
|
|
|
@compatibility(is_backward_compatible=True)
|
|
|
|
class MetaInfoProp(torch.fx.Interpreter):
|
|
|
|
"""
|
|
|
|
Execute an FX graph Node-by-Node with meta tensor and
|
|
|
|
record the memory usage, FLOPs, and type of the result
|
|
|
|
into the corresponding node.
|
|
|
|
|
|
|
|
Usage:
|
|
|
|
BATCH_SIZE = 2
|
|
|
|
DIM_IN = 4
|
|
|
|
DIM_HIDDEN = 16
|
|
|
|
DIM_OUT = 16
|
|
|
|
model = torch.nn.Sequential(
|
|
|
|
torch.nn.Linear(DIM_IN, DIM_HIDDEN),
|
|
|
|
torch.nn.Linear(DIM_HIDDEN, DIM_OUT),
|
|
|
|
)
|
|
|
|
input_sample = torch.rand(BATCH_SIZE, DIM_IN)
|
|
|
|
gm = symbolic_trace(model)
|
|
|
|
interp = MetaInfoProp(gm)
|
|
|
|
interp.run(input_sample)
|
|
|
|
print(interp.summary(format='kb')) # don't panic if some statistics are 0.00 MB
|
|
|
|
|
|
|
|
|
|
|
|
# output of above code is
|
|
|
|
Op type Op Forward FLOPs Backward FLOPs FWD_OUT FWD_TMP BWD_OUT BWD_TMP
|
|
|
|
----------- ------- --------------- ---------------- --------- --------- --------- ---------
|
|
|
|
placeholder input_1 0 FLOPs 0 FLOPs 0.00 KB 0.00 KB 0.00 KB 0.00 KB
|
|
|
|
call_module _0 128 FLOPs 288 FLOPs 0.12 KB 0.00 KB 0.34 KB 0.00 KB
|
|
|
|
call_module _1 512 FLOPs 1,056 FLOPs 0.12 KB 0.00 KB 1.19 KB 0.00 KB
|
|
|
|
output output 0 FLOPs 0 FLOPs 0.00 KB 0.00 KB 0.00 KB 0.00 KB
|
|
|
|
Args:
|
|
|
|
module (GraphModule): The module to be executed
|
|
|
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
_is_proped: bool = False
|
|
|
|
|
|
|
|
@compatibility(is_backward_compatible=True)
|
|
|
|
def run_node(self, n: Node) -> Any:
|
|
|
|
"""
|
|
|
|
Run a specific node ``n`` and return the result.
|
|
|
|
Calls into placeholder, get_attr, call_function,
|
|
|
|
call_method, call_module, or output depending
|
|
|
|
on ``node.op``
|
|
|
|
|
|
|
|
Args:
|
|
|
|
n (Node): The Node to execute
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
Any: The result of executing ``n``
|
|
|
|
"""
|
|
|
|
self._is_proped = True
|
|
|
|
result, meta_info = super().run_node(n)
|
|
|
|
|
|
|
|
def extract_tensor_meta(obj):
|
|
|
|
if isinstance(obj, torch.Tensor):
|
|
|
|
return _extract_tensor_metadata(obj)
|
|
|
|
else:
|
|
|
|
return TensorMetadata(None, None, False, None, 0, False)
|
|
|
|
|
|
|
|
tensor_meta = tree_map(extract_tensor_meta, result)
|
|
|
|
n.meta["tensor_meta"] = tensor_meta
|
|
|
|
n.meta = {**n.meta, **asdict(meta_info)} # extend MetaInfo to `n.meta`
|
|
|
|
# TODO: the attribute node_size should be removed in the future
|
|
|
|
setattr(n, "node_size", activation_size(n.meta.get("fwd_out", 0)) + activation_size(n.meta.get("fwd_tmp", 0)))
|
|
|
|
setattr(n, "fwd_flop", n.meta.get("fwd_flop", 0))
|
|
|
|
setattr(n, "bwd_flop", n.meta.get("bwd_flop", 0))
|
|
|
|
n.meta["type"] = type(result)
|
|
|
|
|
|
|
|
# retain the autograd graph
|
|
|
|
for param in self.module.parameters():
|
|
|
|
param.grad = None
|
|
|
|
|
|
|
|
return result
|
|
|
|
|
|
|
|
# Main Node running APIs
|
|
|
|
@compatibility(is_backward_compatible=True)
|
|
|
|
def placeholder(self, target: "Target", args: Tuple[Argument, ...], kwargs: Dict[str, Any]) -> Any:
|
|
|
|
"""
|
|
|
|
Execute a ``placeholder`` node. Note that this is stateful:
|
|
|
|
``Interpreter`` maintains an internal iterator over
|
|
|
|
arguments passed to ``run`` and this method returns
|
|
|
|
next() on that iterator.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
target (Target): The call target for this node. See
|
|
|
|
`Node <https://pytorch.org/docs/master/fx.html#torch.fx.Node>`__ for
|
|
|
|
details on semantics
|
|
|
|
args (Tuple): Tuple of positional args for this invocation
|
|
|
|
kwargs (Dict): Dict of keyword arguments for this invocation
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
result (Any): The argument value that was retrieved
|
|
|
|
meta_info (MetaInfo): The memory cost and FLOPs estimated with `MetaTensor`.
|
|
|
|
"""
|
|
|
|
return super().placeholder(target, args, kwargs), GraphInfo()
|
|
|
|
|
|
|
|
@compatibility(is_backward_compatible=True)
|
|
|
|
def get_attr(self, target: "Target", args: Tuple[Argument, ...], kwargs: Dict[str, Any]) -> Any:
|
|
|
|
"""
|
|
|
|
Execute a ``get_attr`` node. Will retrieve an attribute
|
|
|
|
value from the ``Module`` hierarchy of ``self.module``.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
target (Target): The call target for this node. See
|
|
|
|
`Node <https://pytorch.org/docs/master/fx.html#torch.fx.Node>`__ for
|
|
|
|
details on semantics
|
|
|
|
args (Tuple): Tuple of positional args for this invocation
|
|
|
|
kwargs (Dict): Dict of keyword arguments for this invocation
|
|
|
|
|
|
|
|
Return:
|
|
|
|
result (Any): The argument value that was retrieved
|
|
|
|
meta_info (MetaInfo): The memory cost and FLOPs estimated with `MetaTensor`.
|
|
|
|
"""
|
|
|
|
return super().get_attr(target, args, kwargs), GraphInfo()
|
|
|
|
|
|
|
|
@compatibility(is_backward_compatible=True)
|
|
|
|
def call_function(self, target: "Target", args: Tuple[Argument, ...], kwargs: Dict[str, Any]) -> Any:
|
|
|
|
"""
|
|
|
|
Execute a ``call_function`` node with meta tensor and return the result and its meta profile.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
target (Target): The call target for this node. See
|
|
|
|
`Node <https://pytorch.org/docs/master/fx.html#torch.fx.Node>`__ for
|
|
|
|
details on semantics
|
|
|
|
args (Tuple): Tuple of positional args for this invocation
|
|
|
|
kwargs (Dict): Dict of keyword arguments for this invocation
|
|
|
|
|
|
|
|
Return
|
|
|
|
result (Any): The argument value that was retrieved
|
|
|
|
meta_info (MetaInfo): The memory cost and FLOPs estimated with `MetaTensor`.
|
|
|
|
"""
|
|
|
|
assert not isinstance(target, str)
|
|
|
|
return profile_function(target)(*args, **kwargs)
|
|
|
|
|
|
|
|
@compatibility(is_backward_compatible=True)
|
|
|
|
def call_method(self, target: "Target", args: Tuple[Argument, ...], kwargs: Dict[str, Any]) -> Any:
|
|
|
|
"""
|
|
|
|
Execute a ``call_method`` node with meta tensor and return the result and its meta profile.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
target (Target): The call target for this node. See
|
|
|
|
`Node <https://pytorch.org/docs/master/fx.html#torch.fx.Node>`__ for
|
|
|
|
details on semantics
|
|
|
|
args (Tuple): Tuple of positional args for this invocation
|
|
|
|
kwargs (Dict): Dict of keyword arguments for this invocation
|
|
|
|
|
|
|
|
Return
|
|
|
|
result (Any): The argument value that was retrieved
|
|
|
|
meta_info (MetaInfo): The memory cost and FLOPs estimated with `MetaTensor`.
|
|
|
|
"""
|
|
|
|
return profile_method(target)(*args, **kwargs)
|
|
|
|
|
|
|
|
@compatibility(is_backward_compatible=True)
|
|
|
|
def call_module(self, target: "Target", args: Tuple[Argument, ...], kwargs: Dict[str, Any]) -> Any:
|
|
|
|
"""
|
|
|
|
Execute a ``call_module`` node with meta tensor and return the result and its meta profile.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
target (Target): The call target for this node. See
|
|
|
|
`Node <https://pytorch.org/docs/master/fx.html#torch.fx.Node>`__ for
|
|
|
|
details on semantics
|
|
|
|
args (Tuple): Tuple of positional args for this invocation
|
|
|
|
kwargs (Dict): Dict of keyword arguments for this invocation
|
|
|
|
|
|
|
|
Return
|
|
|
|
result (Any): The argument value that was retrieved
|
|
|
|
meta_info (MetaInfo): The memory cost and FLOPs estimated with `MetaTensor`.
|
|
|
|
"""
|
|
|
|
# Retrieve executed args and kwargs values from the environment
|
|
|
|
# Execute the method and return the result
|
|
|
|
assert isinstance(target, str)
|
|
|
|
submod = self.fetch_attr(target)
|
|
|
|
return profile_module(submod)(*args, **kwargs)
|
|
|
|
|
|
|
|
@compatibility(is_backward_compatible=True)
|
|
|
|
def output(self, target: "Target", args: Tuple[Argument, ...], kwargs: Dict[str, Any]) -> Any:
|
|
|
|
"""
|
|
|
|
Execute an ``output`` node. This really just retrieves
|
|
|
|
the value referenced by the ``output`` node and returns it.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
target (Target): The call target for this node. See
|
|
|
|
`Node <https://pytorch.org/docs/master/fx.html#torch.fx.Node>`__ for
|
|
|
|
details on semantics
|
|
|
|
args (Tuple): Tuple of positional args for this invocation
|
|
|
|
kwargs (Dict): Dict of keyword arguments for this invocation
|
|
|
|
|
|
|
|
Return:
|
|
|
|
result (Any): The argument value that was retrieved
|
|
|
|
meta_info (MetaInfo): The memory cost and FLOPs estimated with `MetaTensor`.
|
|
|
|
"""
|
|
|
|
if hasattr(args[0], "_tensor"):
|
|
|
|
return args[0], GraphInfo(fwd_in=[args[0]._tensor])
|
|
|
|
return args[0], GraphInfo(save_fwd_in=True)
|
|
|
|
|
|
|
|
def propagate(self, *args):
|
|
|
|
"""
|
|
|
|
Run `module` via interpretation and return the result and
|
|
|
|
record the shape and type of each node.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
*args (Tensor): the sample input.
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
Any: The value returned from executing the Module
|
|
|
|
"""
|
|
|
|
return super().run(*args)
|
|
|
|
|
|
|
|
def summary(self, unit: str = "MB") -> str:
|
|
|
|
"""
|
|
|
|
Summarizes the memory and FLOPs statistics of the `GraphModule` in
|
|
|
|
tabular format. Note that this API requires the ``tabulate`` module
|
|
|
|
to be installed.
|
|
|
|
"""
|
|
|
|
# https://github.com/pytorch/pytorch/blob/master/torch/fx/graph.py
|
|
|
|
try:
|
|
|
|
from tabulate import tabulate
|
|
|
|
except ImportError:
|
|
|
|
print(
|
|
|
|
"`summary` relies on the library `tabulate`, "
|
|
|
|
"which could not be found on this machine. Run `pip "
|
|
|
|
"install tabulate` to install the library."
|
|
|
|
)
|
|
|
|
|
|
|
|
assert self._is_proped, "Please call `interp.run(input)` before calling `interp.summary()`."
|
|
|
|
|
|
|
|
# Build up a list of summary information for each node
|
|
|
|
node_summaries: List[List[Any]] = []
|
|
|
|
|
|
|
|
def mem_repr(mem: int) -> str:
|
|
|
|
unit_divisor_map = {
|
|
|
|
"kb": 1024,
|
|
|
|
"mb": 1024**2,
|
|
|
|
"gb": 1024**3,
|
|
|
|
"tb": 1024**4,
|
|
|
|
}
|
|
|
|
return f"{mem / unit_divisor_map[unit.lower()]:.2f} {unit.upper()}"
|
|
|
|
|
|
|
|
def flops_repr(flop: int) -> str:
|
|
|
|
return f"{flop:,} FLOPs"
|
|
|
|
|
|
|
|
accumulate_size = 0
|
|
|
|
for node in self.module.graph.nodes:
|
|
|
|
node: Node
|
|
|
|
accumulate_size += calculate_fwd_out(node) + calculate_fwd_tmp(node)
|
|
|
|
node_summaries.append(
|
|
|
|
[
|
|
|
|
node.op,
|
|
|
|
str(node),
|
|
|
|
flops_repr(node.meta["fwd_flop"]),
|
|
|
|
flops_repr(node.meta["bwd_flop"]),
|
|
|
|
mem_repr(accumulate_size),
|
|
|
|
mem_repr(calculate_fwd_in(node)),
|
|
|
|
mem_repr(calculate_fwd_out(node)),
|
|
|
|
mem_repr(calculate_fwd_tmp(node)),
|
|
|
|
mem_repr(node.meta["bwd_mem_out"]),
|
|
|
|
mem_repr(node.meta["bwd_mem_tmp"]),
|
|
|
|
]
|
|
|
|
)
|
|
|
|
|
|
|
|
# Use the ``tabulate`` library to create a well-formatted table
|
|
|
|
# presenting our summary information
|
|
|
|
headers: List[str] = [
|
|
|
|
"Op type",
|
|
|
|
"Op",
|
|
|
|
"Forward FLOPs",
|
|
|
|
"Backward FLOPs",
|
|
|
|
"Accumulated Memory",
|
|
|
|
"FWD_IN",
|
|
|
|
"FWD_OUT",
|
|
|
|
"FWD_TMP",
|
|
|
|
"BWD_OUT",
|
|
|
|
"BWD_TMP",
|
|
|
|
]
|
|
|
|
|
|
|
|
return tabulate(node_summaries, headers=headers, stralign="right")
|
|
|
|
|
|
|
|
|
|
|
|
def metainfo_trace(gm: torch.fx.GraphModule, *args, verbose: bool = False, unit: str = "MB", **kwargs) -> None:
|
|
|
|
"""
|
|
|
|
MetaInfo tracing API
|
|
|
|
|
|
|
|
Given a ``GraphModule`` and a sample input, this API will trace the MetaInfo of a single training cycle,
|
|
|
|
and annotate them on ``gm.graph``.
|
|
|
|
|
|
|
|
Uses:
|
|
|
|
>>> model = ...
|
|
|
|
>>> gm = symbolic_trace(model)
|
|
|
|
>>> args = ... # sample input to the ``GraphModule``
|
|
|
|
>>> metainfo_trace(gm, *args)
|
|
|
|
|
|
|
|
Args:
|
|
|
|
gm (torch.fx.GraphModule): The ``GraphModule`` to be annotated with MetaInfo.
|
|
|
|
verbose (bool, optional): Whether to show ``MetaInfoProp.summary()`. Defaults to False.
|
|
|
|
unit (str, optional): The unit of memory. Defaults to "MB".
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
torch.fx.GraphModule: The ``GraphModule`` annotated with MetaInfo.
|
|
|
|
"""
|
|
|
|
device = torch.device("cuda:0") if torch.cuda.is_available() else torch.device("cpu")
|
|
|
|
interp = MetaInfoProp(gm.to(device))
|
|
|
|
if is_compatible_with_meta():
|
|
|
|
from colossalai.fx.profiler import MetaTensor
|
|
|
|
|
|
|
|
args = tree_map(lambda x: MetaTensor(x, fake_device=device), args)
|
|
|
|
kwargs = tree_map(lambda x: MetaTensor(x, fake_device=device), kwargs)
|
|
|
|
interp.propagate(*args, **kwargs)
|
|
|
|
if verbose:
|
|
|
|
interp.summary(unit)
|
|
|
|
gm.to("cpu")
|
|
|
|
del interp
|
|
|
|
return gm
|