ColossalAI/colossalai/fx/passes/passes_for_gpt2_test.py

371 lines
16 KiB
Python
Raw Normal View History

import torch
from torch.fx.graph_module import GraphModule
from typing import Callable, List, Dict, Any, Optional
from torch.fx._compatibility import compatibility
from packaging import version
from colossalai.fx.passes.meta_info_prop import TensorMetadata
import inspect
from typing import List
from colossalai.fx.passes.split_module import Partition
from colossalai.fx.passes.adding_split_node_pass import pipe_split, balanced_split_pass
from torch.fx.node import Node
def customized_split_pass_for_gpt2(gm: torch.fx.GraphModule, pp_size: int, partition_list: List[int]):
'''
This pass is only used to do the gpt2 performance test, it may move into adding_split_node_pass.py, and will be deprecated in future.
'''
mod_graph = gm.graph
valid_children_size = 0
valid_children = []
for node in mod_graph.nodes:
if node.op == "call_module":
valid_children_size += 1
valid_children.append(node.target)
if valid_children_size < pp_size:
# If valid children is not enough to shard, we will use balanced policy instead of uniform policy.
return balanced_split_pass(gm, pp_size)
accumulate_layer_amount = 0
list_of_part = partition_list
part_index = 0
for node in mod_graph.nodes:
if pp_size <= 1:
break
if node.op == "call_module":
if node.target in valid_children:
accumulate_layer_amount += 1
if accumulate_layer_amount == list_of_part[part_index]:
part_index += 1
pp_size -= 1
with mod_graph.inserting_after(node):
split_node = mod_graph.create_node('call_function', pipe_split)
gm.recompile()
return gm
def split_with_split_nodes_pass_for_gp2_test(annotated_gm: torch.fx.GraphModule):
'''
This pass will be used in gpt2 test, only a part of changes may be added into
split_with_split_nodes_pass, and it will be deprecated in future.
'''
part_idx = 0
def eliminate_unused_placeholders(gm):
for node in gm.graph.nodes:
if node.op == 'placeholder':
if not len(node.users):
gm.graph.erase_node(node)
gm.recompile()
return gm
def refill_outputs_and_placeholders(gm, next_partition_placeholders):
'''
This method is used to eliminate the outputs in previous partition which is unused in next partition.
In split module pass, it treats partitions as a DAG, but we need treat them as a single direction linked list in pipeline parallel.
The difference is if a output from partition 0 is an input argument of partition 3, the DAG will not transfer it
to partition 1 and partition 2. However, in single direction linked list, we need to do so.
'''
output_type = None
output_args = []
non_output_list = []
new_placeholder_list = []
for node in gm.graph.nodes:
if node.op == 'output':
if isinstance(node.args[0], (tuple, list)):
output_type = node.args[0].__class__
output_args.extend([n.name for n in node.args[0]])
else:
output_args.append(node.args[0].name)
rm_list = []
for name in output_args:
if next_partition_placeholders and name not in next_partition_placeholders:
rm_list.append(name)
for name in rm_list:
output_args.remove(name)
gm.graph.erase_node(node)
else:
non_output_list.append(node.name)
for name in next_partition_placeholders:
if name not in output_args:
output_args.append(name)
for name in output_args:
if name not in non_output_list:
gm.graph.placeholder(name)
# convert name to node for output_args
for index, name in enumerate(output_args):
for n in gm.graph.nodes:
if n.name == name:
output_args[index] = n
continue
# reorder the output args to make sure
# output args has same order as next partition placeholder
reorder_output_args = []
if next_partition_placeholders:
for name in next_partition_placeholders:
for node in output_args:
if node.name == name:
reorder_output_args.append(node)
continue
for node in gm.graph.nodes:
if node.op == 'placeholder':
new_placeholder_list.append(node.name)
if output_type is not None:
gm.graph.output(output_type(output_args))
else:
gm.graph.output(output_args)
gm.recompile()
return gm, new_placeholder_list
def split_callback(n: torch.fx.Node):
nonlocal part_idx
if (n.op, n.target) == ('call_function', pipe_split):
part_idx += 1
return part_idx
split_mod = split_module_for_gpt2_test(annotated_gm, None, split_callback)
split_submodules = []
for name, submodule in split_mod.named_modules():
if isinstance(submodule, torch.fx.GraphModule):
for node in submodule.graph.nodes:
if (node.op, node.target) == ('call_function', pipe_split):
submodule.graph.erase_node(node)
submodule.recompile()
split_submodules.append(submodule)
submodules = list(split_mod.children())
placeholder_dict = {}
for submodule in submodules:
submodule = eliminate_unused_placeholders(submodule)
placeholder_dict[submodule] = []
submodules.reverse()
for index, submodule in enumerate(submodules):
if index == 0:
placeholder_list = []
else:
placeholder_list = placeholder_dict[submodules[index - 1]]
submodule, placeholder_dict[submodule] = refill_outputs_and_placeholders(submodule, placeholder_list)
submodule.recompile()
split_mod.recompile()
return split_mod, split_submodules
@compatibility(is_backward_compatible=True)
def split_module_for_gpt2_test(
m: GraphModule,
root_m: torch.nn.Module,
split_callback: Callable[[torch.fx.node.Node], int],
):
"""
This pass will be used in gpt2 pp performance test, only a part of changes may be added into
split_module, and it will be deprecated in future.
"""
partitions: Dict[str, Partition] = {}
orig_nodes: Dict[str, torch.fx.node.Node] = {}
def _node_with_all_tensor_element(node_metadata: Any) -> int:
"""
return whether node contains non-tensor element.
"""
all_tensor_node = True
if isinstance(node_metadata, TensorMetadata):
all_tensor_node = node_metadata.is_tensor and all_tensor_node
elif isinstance(node_metadata, dict):
value_list = [v for _, v in node_metadata.items()]
all_tensor_node += _node_with_all_tensor_element(value_list)
else:
for element in node_metadata:
all_tensor_node += _node_with_all_tensor_element(element)
return all_tensor_node
def _move_all_ancestors_into_partition(node, partition_name):
all_ancestors = set()
def _gen_all_ancestors_set(node):
all_ancestors.add(node)
for n in node.all_input_nodes:
if n in all_ancestors:
continue
_gen_all_ancestors_set(n)
_gen_all_ancestors_set(node)
for n in list(all_ancestors):
if n.op != 'placeholder' and n._fx_partition > partition_name:
n._fx_partition = partition_name
def record_cross_partition_use(def_node: torch.fx.node.Node,
use_node: Optional[torch.fx.node.Node]): # noqa: B950
def_partition_name = getattr(def_node, '_fx_partition', None)
use_partition_name = getattr(use_node, '_fx_partition', None)
if def_partition_name != use_partition_name:
# if 'tensor_meta' in def_node.meta:
# if not _node_with_all_tensor_element(def_node.meta['tensor_meta']):
# _move_all_ancestors_into_partition(use_node, def_partition_name)
# node_process_list.extend(use_node.all_input_nodes)
# node_process_list.extend(list(use_node.users))
# node_process_list.append(use_node)
# return
if def_partition_name is not None:
def_partition = partitions[def_partition_name]
def_partition.outputs.setdefault(def_node.name)
if use_partition_name is not None:
def_partition.partition_dependents.setdefault(use_partition_name)
if use_partition_name is not None:
use_partition = partitions[use_partition_name]
use_partition.inputs.setdefault(def_node.name)
if def_partition_name is not None:
use_partition.partitions_dependent_on.setdefault(def_partition_name)
node_process_list = list(m.graph.nodes)
# split nodes into parititons
while node_process_list:
node = node_process_list.pop(0)
orig_nodes[node.name] = node
if node.op in ["placeholder"]:
continue
if node.op == 'output':
# partition_name = str(split_callback(node))
# def _set_output_args_partition(n, partition_name):
# n._fx_partition = partition_name
# torch.fx.graph.map_arg(node.args[0], lambda n: _set_output_args_partition(n, partition_name))
torch.fx.graph.map_arg(node.args[0], lambda n: record_cross_partition_use(n, None))
continue
partition_name = str(split_callback(node))
# add node to partitions
partition = partitions.get(partition_name)
if partition is None:
partitions[partition_name] = partition = Partition(partition_name)
partition.node_names.append(node.name)
origin_partition_name = getattr(node, '_fx_partition', None)
if origin_partition_name is None:
node._fx_partition = partition_name
torch.fx.graph.map_arg(node.args, lambda def_node: record_cross_partition_use(def_node, node))
torch.fx.graph.map_arg(node.kwargs, lambda def_node: record_cross_partition_use(def_node, node)) # noqa: B950
# find partitions with no dependencies
root_partitions: List[str] = []
for partition_name, partition in partitions.items():
if not len(partition.partitions_dependent_on):
root_partitions.append(partition_name)
# check partitions for circular dependencies and create topological partition ordering
sorted_partitions: List[str] = []
while root_partitions:
root_partition = root_partitions.pop()
sorted_partitions.append(root_partition)
for dependent in partitions[root_partition].partition_dependents:
partitions[dependent].partitions_dependent_on.pop(root_partition)
if not partitions[dependent].partitions_dependent_on:
root_partitions.append(dependent)
if len(sorted_partitions) != len(partitions):
raise RuntimeError("cycle exists between partitions!")
# add placeholders to parititons
for partition_name in sorted_partitions:
partition = partitions[partition_name]
for input in partition.inputs:
placeholder = partition.graph.placeholder(input)
placeholder.meta = orig_nodes[input].meta.copy()
partition.environment[orig_nodes[input]] = placeholder
# Transform nodes and collect targets for partition's submodule
for node in m.graph.nodes:
if hasattr(node, '_fx_partition'):
partition = partitions[node._fx_partition]
# swap out old graph nodes in kw/args with references to new nodes in this submodule
environment = partition.environment
gathered_args = torch.fx.graph.map_arg(node.args, lambda n: environment[n])
gathered_kwargs = torch.fx.graph.map_arg(node.kwargs, lambda n: environment[n])
if node.op not in ['call_module', 'get_attr']:
target = node.target
else:
target_atoms = node.target.split('.')
target_attr = m
for atom in target_atoms:
if not hasattr(target_attr, atom):
raise RuntimeError(f'Operator target {node.target} not found!')
target_attr = getattr(target_attr, atom)
# target = target_atoms[-1]
target = '_'.join(target_atoms)
partition.targets[target] = target_attr
assert isinstance(gathered_args, tuple)
assert isinstance(gathered_kwargs, dict)
new_node = partition.graph.create_node(op=node.op,
target=target,
args=gathered_args,
kwargs=gathered_kwargs,
name=node.name)
new_node.meta = node.meta.copy()
partition.environment[node] = new_node
# Set up values to construct base module
base_mod_env: Dict[str, torch.fx.node.Node] = {}
base_mod_graph: torch.fx.graph.Graph = torch.fx.graph.Graph()
base_mod_attrs: Dict[str, torch.fx.graph_module.GraphModule] = {}
for node in m.graph.nodes:
if node.op == 'placeholder':
if version.parse(torch.__version__) < version.parse('1.11.0'):
base_mod_env[node.name] = base_mod_graph.placeholder(node.name, type_expr=node.type)
else:
default_value = node.args[0] if len(node.args) > 0 else inspect.Signature.empty
base_mod_env[node.name] = base_mod_graph.placeholder(node.name,
type_expr=node.type,
default_value=default_value)
base_mod_env[node.name].meta = node.meta.copy()
# Do some things iterating over the partitions in topological order again:
# 1) Finish off submodule Graphs by setting corresponding outputs
# 2) Construct GraphModules for each submodule
# 3) Construct the base graph by emitting calls to those submodules in
# topological order
for partition_name in sorted_partitions:
partition = partitions[partition_name]
# Set correct output values
output_vals = tuple(partition.environment[orig_nodes[name]] for name in partition.outputs)
output_vals = output_vals[0] if len(output_vals) == 1 else output_vals # type: ignore[assignment]
partition.graph.output(output_vals)
# Construct GraphModule for this partition
submod_name = f'submod_{partition_name}'
base_mod_attrs[submod_name] = torch.fx.graph_module.GraphModule(partition.targets,
partition.graph) # noqa: B950
# Emit call in base graph to this submodule
output_val = base_mod_graph.call_module(submod_name, tuple(base_mod_env[name] for name in partition.inputs))
if len(partition.outputs) > 1:
# Unpack multiple return values from submodule
output_val_proxy = torch.fx.proxy.Proxy(output_val)
for i, output_name in enumerate(partition.outputs):
base_mod_env[output_name] = output_val_proxy[i].node # type: ignore[index]
else:
if not partition.outputs:
continue
base_mod_env[list(partition.outputs)[0]] = output_val
for node in m.graph.nodes:
if node.op == 'output':
base_mod_graph.output(torch.fx.graph.map_arg(node.args[0], lambda n: base_mod_env[n.name])) # noqa: B950
return torch.fx.graph_module.GraphModule(base_mod_attrs, base_mod_graph)