ColossalAI/applications/Chat/evaluate/evaluator.py

131 lines
5.9 KiB
Python
Raw Normal View History

import os
from typing import Any, Dict, List
import gpt_evaluate
import metrics
import pandas as pd
from utils import get_data_per_category, jdump
class Evaluator(object):
"""
A class named Evaluator includes GPT-3.5/GPT-4 evaluation
and automatic evaluation
"""
def __init__(self, params: Dict[str, Any], battle_prompt: Dict[str, Any], gpt_evaluation_prompt: Dict[str,
Any]) -> None:
self.params = params
self.battle_prompt = battle_prompt
self.gpt_evaluation_prompt = gpt_evaluation_prompt
self.automatic_metric_stats = dict()
self.gpt35_evaluation_results = dict()
self.battle_results = []
def battle(self, answers1: List[Dict], answers2: List[Dict]) -> None:
"""
Comparison between two models using GPT-4 as the reviewer.
"""
self.battle_results = gpt_evaluate.battle(answers1, answers2, self.battle_prompt)
def evaluate(self, answers: List[Dict], targets: List[Dict]) -> None:
"""
A comprehensive evaluation of the answers from the model.
The function evaluates the model's performance from different perspectives
using GPT-3.5, GPT-4, and off-the-shelf evaluation metrics.
The metrics will be decided by the config file.
"""
def switch(metric):
if metric == "BLEU":
return metrics.bleu_score(preds=predicts_list, targets=targets_list)
elif metric == "ROUGE":
return metrics.rouge_cn_score(preds=predicts_list, targets=targets_list)
elif (metric == "Distinct"):
return metrics.distinct_score(preds=predicts_list)
elif (metric == "BERTScore"):
return metrics.bert_score(preds=predicts_list, targets=targets_list)
elif (metric == "Precision"):
return metrics.precision(preds=predicts_list, targets=targets_list)
elif (metric == "Recall"):
return metrics.recall(preds=predicts_list, targets=targets_list)
elif (metric == "F1 score"):
return metrics.F1_score(preds=predicts_list, targets=targets_list)
else:
raise ValueError(f"Unexpected metric")
answers_per_category = get_data_per_category(answers, list(self.params.keys()))
targets_per_category = get_data_per_category(targets, list(self.params.keys()))
# automatic evaluation
for category in self.params:
category_metrics = self.params[category]["Metrics"]
self.automatic_metric_stats[category] = {}
targets_list = [
target["target"] if target["target"] else target["output"] for target in targets_per_category[category]
]
predicts_list = [answer["output"] for answer in answers_per_category[category]]
for metric in category_metrics:
self.automatic_metric_stats[category].update(switch(metric=metric))
# gpt35 evaluation
for category in self.params:
category_metrics = self.params[category]["GPT-3.5"]
prompt = self.gpt_evaluation_prompt.get(category, None)
if prompt is None:
print(f"No prompt for category {category}! Use prompt for category general now.")
prompt = self.gpt_evaluation_prompt["general"]
self.gpt35_evaluation_results[category] = gpt_evaluate.gpt35_evaluate(answers_per_category[category],
prompt, category_metrics, category)
def save(self, path: str, model_name_list: List[str]) -> None:
"""
Save evaluation results of GPT-3.5, GPT-4, and off-the-shelf evaluation metrics.
"""
if len(model_name_list) == 2:
save_path = os.path.join(path, "gpt_evaluate", "battle_results")
gpt_evaluate.save_battle_results(self.battle_results, model_name_list[0], model_name_list[1], save_path)
else:
# save evaluation results for automatic metrics
automatic_df = pd.DataFrame(self.automatic_metric_stats)
automatic_results_save_path = os.path.join(path, "automatic_results")
if not os.path.exists(automatic_results_save_path):
os.makedirs(automatic_results_save_path)
automatic_df.to_csv(os.path.join(automatic_results_save_path, f"{model_name_list[0]}.csv"), index=True)
# Save evaluation results for GPT-3.5 evaluation metrics.
all_evaluations = []
base_save_path = os.path.join(path, "gpt_evaluate", "gpt35_evaluate_results")
evaluation_results_save_path = os.path.join(base_save_path, "evaluation_results")
for category, evaluations in self.gpt35_evaluation_results.items():
jdump(
evaluations,
os.path.join(evaluation_results_save_path, model_name_list[0],
f"{category}_evaluation_results.json"))
all_evaluations.extend(evaluations)
jdump(all_evaluations,
os.path.join(evaluation_results_save_path, f"{model_name_list[0]}_evaluation_results.json"))
# Start to calculate scores and save statictics.
evaluation_statistics_save_path = os.path.join(base_save_path, "evaluation_statistics")
gpt_evaluate.save_gpt35_evaluation_statistics(model_name_list[0], all_evaluations,
evaluation_statistics_save_path)
# Save charts and csv.
evaluation_analyses_save_path = os.path.join(base_save_path, "evaluation_analyses")
gpt_evaluate.analyze_gpt35_evaluation_statistics(evaluation_statistics_save_path,
evaluation_analyses_save_path)