mirror of https://github.com/hpcaitech/ColossalAI
78 lines
2.9 KiB
Python
78 lines
2.9 KiB
Python
|
from functools import partial
|
||
|
|
||
|
from colossalai.shardformer.modeling.chatglm2_6b.modeling_chatglm import (
|
||
|
ChatGLMForConditionalGeneration,
|
||
|
ChatGLMModel,
|
||
|
GLMBlock,
|
||
|
GLMTransformer,
|
||
|
SelfAttention,
|
||
|
)
|
||
|
|
||
|
# import colossalai
|
||
|
from colossalai.shardformer.policies.chatglm2 import ChatGLMModelPolicy
|
||
|
|
||
|
from ..modeling._utils import init_to_get_rotary
|
||
|
from ..modeling.chatglm2 import ChatGLM2InferenceForwards
|
||
|
|
||
|
try:
|
||
|
HAS_TRITON_RMSNORM = True
|
||
|
except:
|
||
|
print("you should install triton from https://github.com/openai/triton")
|
||
|
HAS_TRITON_RMSNORM = False
|
||
|
|
||
|
|
||
|
class ChatGLM2InferPolicy(ChatGLMModelPolicy):
|
||
|
def __init__(self) -> None:
|
||
|
super().__init__()
|
||
|
|
||
|
def module_policy(self):
|
||
|
policy = super().module_policy()
|
||
|
self.shard_config._infer()
|
||
|
|
||
|
model_infer_forward = ChatGLM2InferenceForwards.chatglm_model_forward
|
||
|
method_replacement = {"forward": model_infer_forward}
|
||
|
self.append_or_create_method_replacement(description=method_replacement, policy=policy, target_key=ChatGLMModel)
|
||
|
|
||
|
encoder_infer_forward = ChatGLM2InferenceForwards.chatglm_encoder_forward
|
||
|
method_replacement = {"forward": encoder_infer_forward}
|
||
|
self.append_or_create_method_replacement(
|
||
|
description=method_replacement, policy=policy, target_key=GLMTransformer
|
||
|
)
|
||
|
|
||
|
encoder_layer_infer_forward = ChatGLM2InferenceForwards.chatglm_glmblock_forward
|
||
|
method_replacement = {"forward": encoder_layer_infer_forward}
|
||
|
self.append_or_create_method_replacement(description=method_replacement, policy=policy, target_key=GLMBlock)
|
||
|
|
||
|
attn_infer_forward = ChatGLM2InferenceForwards.chatglm_flash_attn_kvcache_forward
|
||
|
method_replacement = {"forward": attn_infer_forward}
|
||
|
self.append_or_create_method_replacement(
|
||
|
description=method_replacement, policy=policy, target_key=SelfAttention
|
||
|
)
|
||
|
if self.shard_config.enable_tensor_parallelism:
|
||
|
policy[GLMBlock].attribute_replacement["self_attention.num_multi_query_groups_per_partition"] = (
|
||
|
self.model.config.multi_query_group_num // self.shard_config.tensor_parallel_size
|
||
|
)
|
||
|
# for rmsnorm and others, we need to check the shape
|
||
|
return policy
|
||
|
|
||
|
def postprocess(self):
|
||
|
init_to_get_rotary(self.model)
|
||
|
return self.model
|
||
|
|
||
|
|
||
|
class ChatGLM2ForConditionalGenerationInferPolicy(ChatGLM2InferPolicy):
|
||
|
def __init__(self) -> None:
|
||
|
super().__init__()
|
||
|
|
||
|
def module_policy(self):
|
||
|
policy = super().module_policy()
|
||
|
model_infer_forward = ChatGLM2InferenceForwards.chatglm_for_conditional_generation_forward
|
||
|
method_replacement = {"forward": partial(model_infer_forward)}
|
||
|
self.append_or_create_method_replacement(
|
||
|
description=method_replacement, policy=policy, target_key=ChatGLMForConditionalGeneration
|
||
|
)
|
||
|
return policy
|
||
|
|
||
|
def postprocess(self):
|
||
|
return super().postprocess()
|