ColossalAI/tests/test_analyzer/test_subclasses/test_aten.py

97 lines
3.6 KiB
Python
Raw Normal View History

from typing import Any, Callable, Union
import pytest
import torch
import torch.nn as nn
from colossalai.testing import clear_cache_before_run
try:
from colossalai._analyzer._subclasses import MetaTensor
except:
pass
aten = torch.ops.aten
registered_meta = {
("aten.convolution.default", True): [ # (aten ops, requires_backward)
(nn.Conv1d(in_channels=3, out_channels=4, kernel_size=2, padding=1, dilation=2), torch.rand(2, 3, 4)),
(nn.Conv2d(in_channels=3, out_channels=4, kernel_size=2, padding=1, dilation=2), torch.rand(2, 3, 4, 4)),
(nn.Conv3d(in_channels=3, out_channels=4, kernel_size=2, padding=1, dilation=2), torch.rand(2, 3, 4, 4, 4)),
(nn.ConvTranspose1d(in_channels=3, out_channels=4, kernel_size=2, padding=1, dilation=2), torch.rand(2, 3, 4)),
(
nn.ConvTranspose2d(in_channels=3, out_channels=4, kernel_size=2, padding=1, dilation=2),
torch.rand(2, 3, 4, 4),
),
(
nn.ConvTranspose3d(in_channels=3, out_channels=4, kernel_size=2, padding=1, dilation=2),
torch.rand(2, 3, 4, 4, 4),
),
],
("aten.native_batch_norm.default", True): [
(nn.BatchNorm1d(4), torch.rand(2, 4)),
(nn.BatchNorm2d(4), torch.rand(1, 4, 4, 4)),
(nn.BatchNorm3d(4), torch.rand(1, 4, 4, 4, 4)),
],
("aten.native_layer_norm.default", True): [
(nn.LayerNorm(4), torch.rand(1, 2, 3, 4)),
],
("aten.avg_pool1d.default", True): [
(nn.MaxPool1d(3, stride=2), torch.rand(4, 5, 5)),
(nn.AvgPool1d(3, stride=2), torch.rand(4, 5, 5)),
(nn.AdaptiveMaxPool1d(3), torch.rand(4, 5, 5)),
(nn.AdaptiveAvgPool1d(3), torch.rand(4, 5, 5)),
],
("aten.avg_pool2d.default", True): [
(nn.MaxPool2d((3, 2), stride=(2, 1)), torch.rand(2, 4, 5, 5)),
(nn.AvgPool2d((3, 2), stride=(2, 1)), torch.rand(2, 4, 5, 5)),
(nn.AdaptiveMaxPool2d((3, 2)), torch.rand(2, 4, 5, 5)),
(nn.AdaptiveAvgPool2d((3, 2)), torch.rand(2, 4, 5, 5)),
],
("aten.relu.default", True): [
(nn.ReLU(), torch.rand(4, 3, 1, 2)),
(nn.LeakyReLU(), torch.rand(4, 3, 1, 2)),
(nn.SiLU(), torch.rand(4, 3, 1, 2)),
(nn.GELU(), torch.rand(4, 3, 1, 2)),
(nn.ELU(), torch.rand(4, 3, 1, 2)),
(nn.Sigmoid(), torch.rand(4, 3, 1, 2)),
(nn.Tanh(), torch.rand(4, 3, 1, 2)),
(nn.Hardswish(), torch.rand(4, 3, 1, 2)),
],
}
def compare_all(tensor: torch.Tensor, meta_tensor: torch.Tensor) -> Any:
assert (
tensor.shape == meta_tensor.shape
), f"the shape of tensor ({tensor.shape}) and meta tensor ({meta_tensor.shape}) does not match."
assert (
tensor.dtype == meta_tensor.dtype
), f"the dtype of tensor ({tensor.dtype}) and meta tensor ({meta_tensor.dtype}) does not match."
assert (
tensor.stride() == meta_tensor.stride()
), f"the stride of tensor ({tensor.stride()}) and meta tensor ({meta_tensor.stride()}) does not match."
def run_and_compare(f: Union[nn.Module, Callable], x: torch.Tensor, requires_backward=False) -> Any:
x.requires_grad = requires_backward
meta_x = MetaTensor(x)
x_out, meta_out = f(x), f(meta_x)
compare_all(x_out, meta_out)
if requires_backward:
x_out.sum().backward()
meta_out.sum().backward()
compare_all(x.grad, meta_x.grad)
@pytest.mark.skipif(torch.__version__ < "1.12.0", reason="torch version < 12")
@clear_cache_before_run()
def test_meta_aten():
for (aten_op, requires_backward), v in registered_meta.items():
for f, x in v:
run_and_compare(f, x, requires_backward)
if __name__ == "__main__":
test_meta_aten()