|
|
|
import torch
|
|
|
|
|
|
|
|
from colossalai.kernel.kernel_loader import InferenceOpsLoader
|
|
|
|
from colossalai.kernel.triton import copy_kv_to_blocked_cache, decoding_fused_rotary_embedding, rotary_embedding
|
|
|
|
from tests.test_infer.test_ops.triton.kernel_utils import (
|
|
|
|
mock_alloc_block_table_and_kvcache_v2,
|
|
|
|
mock_alloc_block_table_and_kvcache_v3,
|
|
|
|
mock_alloc_single_token,
|
|
|
|
)
|
|
|
|
|
|
|
|
inference_ops = InferenceOpsLoader().load()
|
|
|
|
|
|
|
|
try:
|
|
|
|
import triton # noqa
|
|
|
|
|
|
|
|
except ImportError:
|
|
|
|
print("please install triton from https://github.com/openai/triton")
|
|
|
|
|
|
|
|
|
|
|
|
BATCH = 16
|
|
|
|
configs = [
|
|
|
|
triton.testing.Benchmark(
|
|
|
|
x_names=["num_tokens"],
|
|
|
|
x_vals=[2**i for i in range(4, 11)],
|
|
|
|
line_arg="provider",
|
|
|
|
line_vals=[
|
|
|
|
"no_fused_triton_rotary_emb_func",
|
|
|
|
"fused_triton_rotary_emb_func",
|
|
|
|
"no_fused_cuda_rotary_emb_func",
|
|
|
|
"fused_cuda_rotary_emb_func",
|
|
|
|
],
|
|
|
|
line_names=[
|
|
|
|
"no_fused_triton_rotary_emb_func",
|
|
|
|
"fused_triton_rotary_emb_func",
|
|
|
|
"no_fused_cuda_rotary_emb_func",
|
|
|
|
"fused_cuda_rotary_emb_func",
|
|
|
|
],
|
|
|
|
styles=[("red", "-"), ("blue", "-"), ("green", "-"), ("yellow", "-")],
|
|
|
|
ylabel="ms",
|
|
|
|
plot_name=f"rotary_emb-batch-{BATCH}",
|
|
|
|
args={"num_kv_heads": 16},
|
|
|
|
)
|
|
|
|
]
|
|
|
|
|
|
|
|
|
|
|
|
@triton.testing.perf_report(configs)
|
|
|
|
def benchmark_rotary_emb(
|
|
|
|
provider: str,
|
|
|
|
num_tokens: int,
|
|
|
|
num_kv_heads: int,
|
|
|
|
):
|
|
|
|
BATCH_SIZE = 16
|
|
|
|
SEQ_LEN = num_tokens // BATCH_SIZE
|
|
|
|
max_num_blocks_per_seq = 8
|
|
|
|
block_size = 64
|
|
|
|
warmup = 10
|
|
|
|
rep = 100
|
|
|
|
|
|
|
|
head_dim = 4096
|
|
|
|
dtype = torch.float16
|
|
|
|
|
|
|
|
q_shape = (num_tokens, num_kv_heads, head_dim)
|
|
|
|
q = -2.3 + 0.5 * torch.randn(q_shape, dtype=dtype, device="cuda")
|
|
|
|
k_shape = (num_tokens, num_kv_heads, head_dim)
|
|
|
|
k = -2.3 + 0.5 * torch.randn(k_shape, dtype=dtype, device="cuda")
|
|
|
|
v = -2.3 + 0.5 * torch.randn(k_shape, dtype=dtype, device="cuda")
|
|
|
|
|
|
|
|
cos_shape = (num_tokens, head_dim // 2)
|
|
|
|
|
|
|
|
cos = -1.2 + 0.5 * torch.randn(cos_shape, dtype=dtype, device="cuda")
|
|
|
|
sin = -2.0 + 0.5 * torch.randn(cos_shape, dtype=dtype, device="cuda")
|
|
|
|
cache_shape = (BATCH_SIZE * max_num_blocks_per_seq, num_kv_heads, block_size, head_dim)
|
|
|
|
k_cache = torch.zeros(size=cache_shape, dtype=dtype, device="cuda")
|
|
|
|
v_cache = torch.zeros(size=cache_shape, dtype=dtype, device="cuda")
|
|
|
|
x = 16 // torch.tensor([], dtype=dtype).element_size()
|
|
|
|
new_cache_shape = (BATCH_SIZE * max_num_blocks_per_seq, num_kv_heads, head_dim // x, block_size, x)
|
|
|
|
new_k_cache = torch.zeros(size=new_cache_shape, dtype=dtype, device="cuda")
|
|
|
|
|
|
|
|
past_kv_seq_lengths = torch.tensor([SEQ_LEN - 1 for _ in range(BATCH_SIZE)], dtype=torch.int32, device="cuda")
|
|
|
|
block_tables = mock_alloc_block_table_and_kvcache_v2(
|
|
|
|
k, v, k_cache, v_cache, past_kv_seq_lengths, BATCH_SIZE, max_num_blocks_per_seq, block_size
|
|
|
|
)
|
|
|
|
_ = mock_alloc_block_table_and_kvcache_v3(
|
|
|
|
k, v, new_k_cache, v_cache, past_kv_seq_lengths, BATCH_SIZE, max_num_blocks_per_seq, block_size
|
|
|
|
)
|
|
|
|
new_k = torch.randn((BATCH_SIZE, num_kv_heads, head_dim), dtype=dtype, device="cuda")
|
|
|
|
new_q = torch.randn_like(new_k)
|
|
|
|
new_v = torch.randn_like(new_k)
|
|
|
|
|
|
|
|
mock_alloc_single_token(block_tables, past_kv_seq_lengths, block_size)
|
|
|
|
kv_seq_lengths = past_kv_seq_lengths + 1
|
|
|
|
block_tables = block_tables.to(device="cuda")
|
|
|
|
|
|
|
|
if provider == "no_fused_triton_rotary_emb_func":
|
|
|
|
fn = lambda: [
|
|
|
|
rotary_embedding(new_q, new_k, cos, sin),
|
|
|
|
copy_kv_to_blocked_cache(
|
|
|
|
new_k, new_v, k_cache, v_cache, kv_lengths=kv_seq_lengths, block_tables=block_tables
|
|
|
|
),
|
|
|
|
]
|
|
|
|
elif provider == "fused_triton_rotary_emb_func":
|
|
|
|
fn = lambda: decoding_fused_rotary_embedding(
|
|
|
|
new_q, new_k, new_v, cos, sin, k_cache, v_cache, block_tables, kv_seq_lengths
|
|
|
|
)
|
|
|
|
elif provider == "no_fused_cuda_rotary_emb_func":
|
|
|
|
fn = lambda: [
|
|
|
|
inference_ops.rotary_embedding(new_q, new_k, cos, sin, True),
|
|
|
|
inference_ops.decode_kv_cache_memcpy(new_k, new_v, new_k_cache, v_cache, kv_seq_lengths, block_tables),
|
|
|
|
]
|
|
|
|
elif provider == "fused_cuda_rotary_emb_func":
|
|
|
|
fn = lambda: inference_ops.rotary_embedding_and_cache_copy(
|
|
|
|
new_q, new_k, new_v, cos, sin, new_k_cache, v_cache, kv_seq_lengths, block_tables, True
|
|
|
|
)
|
|
|
|
else:
|
|
|
|
raise ValueError("Undefined provider")
|
|
|
|
|
|
|
|
ms = triton.testing.do_bench(fn, warmup=warmup, rep=rep)
|
|
|
|
return ms
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == "__main__":
|
|
|
|
benchmark_rotary_emb.run(save_path=".", print_data=True)
|