Making large AI models cheaper, faster and more accessible
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

151 lines
3.7 KiB

import torch
import torch.distributed as dist
from torch.distributed import ProcessGroup
from .moe_info import MoeParallelInfo
def is_moe_tensor(tensor: torch.Tensor) -> bool:
"""
Check whether the given tensor is a moe tensor.
Args:
tensor (torch.Tensor): The tensor to be checked.
Returns:
bool: Whether the given tensor is a moe tensor.
"""
return hasattr(tensor, "moe_info")
def set_moe_tensor_info(tensor: torch.Tensor, moe_info: MoeParallelInfo) -> None:
"""
Set moe info for the given tensor.
Args:
tensor (torch.Tensor): The tensor to be set.
moe_info (dict): The moe info to be set.
"""
tensor.__setattr__("moe_info", moe_info)
def get_moe_info(ep_size: int, dp_size: int, pp_size: int, ep_inside: bool) -> MoeParallelInfo:
"""
Get moe info for the given tensor.
Args:
ep_size (int): The expert parallel size.
dp_size (int): The data parallel size.
pp_size (int): The pipeline parallel size.
ep_inside (bool, optional): Use ep inside dp if True, dp inside ep if Fasle.
Returns:
dict: The moe info of the given tensor.
"""
return MoeParallelInfo(ep_inside, ep_size, dp_size, pp_size)
def get_ep_group(tensor: torch.Tensor) -> ProcessGroup:
"""
Get the expert parallel group of the given tensor.
Args:
tensor (torch.Tensor): The tensor to be checked.
Returns:
torch.distributed.ProcessGroup: The expert parallel group of the given tensor.
"""
return tensor.moe_info.ep_group
def get_ep_size(tensor: torch.Tensor) -> int:
"""
Get the expert parallel size of the given tensor.
Args:
tensor (torch.Tensor): The tensor to be checked.
Returns:
int: The expert parallel size of the given tensor.
"""
return tensor.moe_info.ep_size
def get_dp_size(tensor: torch.Tensor) -> int:
"""
Get the data parallel size of the given tensor.
Args:
tensor (torch.Tensor): The tensor to be checked.
Returns:
int: The data parallel size of the given tensor.
"""
return tensor.moe_info.dp_size
def get_dp_group(tensor: torch.Tensor) -> ProcessGroup:
"""
Get the data parallel group of the given tensor.
Args:
tensor (torch.Tensor): The tensor to be checked.
Returns:
torch.distributed.ProcessGroup: The data parallel group of the given tensor.
"""
return tensor.moe_info.dp_group
def get_ep_rank(tensor: torch.Tensor) -> int:
"""
Get the expert parallel rank of the given tensor.
Args:
tensor (torch.Tensor): The tensor to be checked.
Returns:
int: The expert parallel rank of the given tensor.
"""
return dist.get_rank(get_ep_group(tensor))
def get_dp_rank(tensor: torch.Tensor) -> int:
"""
Get the data parallel rank of the given tensor.
Args:
tensor (torch.Tensor): The tensor to be checked.
Returns:
int: The data parallel rank of the given tensor.
"""
return dist.get_rank(get_dp_group(tensor))
def get_ep_group_ranks(tensor: torch.Tensor) -> int:
"""
Get the expert parallel group ranks of the given tensor.
Args:
tensor (torch.Tensor): The tensor to be checked.
Returns:
int: The expert parallel group ranks of the given tensor.
"""
return tensor.moe_info.ep_group_ranks
def get_dp_group_ranks(tensor: torch.Tensor) -> int:
"""
Get the data parallel group ranks of the given tensor.
Args:
tensor (torch.Tensor): The tensor to be checked.
Returns:
int: The data parallel group ranks of the given tensor.
"""
return tensor.moe_info.dp_group_ranks