ColossalAI/colossalai/fx/profiler/profiler_module/normalization.py

34 lines
1.5 KiB
Python
Raw Normal View History

[fx] add profiler for fx nodes. (#1480) * [fx] modify the calculation of node_size in MetaInfoProp for activation checkpointing usages * [fx] modify the calculation of node_size in MetaInfoProp for activation checkpointing usages * [fx] modify the calculation of node_size in MetaInfoProp for activation checkpointing usages * [fx] merge development into main (#1) * [fx] activation checkpointing using Chen strategies. * [fx] add test for ckpt_solver_chen * [fx] add vanilla activation checkpoint search with test on resnet and densenet * [fx] add a namespace code for solver_chen. * [fx] fix the false interpretation of algorithm 3 in https://arxiv.org/abs/1604.06174. * [fx] fix lowercase naming conventions. * [fx] simplify test for ckpt. * [fx] add rules to linearize computation graphs for searching. (#2) * [fx] modify the calculation of node_size in MetaInfoProp for activation checkpointing usages * [fx] modify the calculation of node_size in MetaInfoProp for activation checkpointing usages * [fx] modify the calculation of node_size in MetaInfoProp for activation checkpointing usages * [fx] merge development into main (#1) * [fx] activation checkpointing using Chen strategies. * [fx] add test for ckpt_solver_chen * [fx] add vanilla activation checkpoint search with test on resnet and densenet * [fx] add a namespace code for solver_chen. * [fx] fix the false interpretation of algorithm 3 in https://arxiv.org/abs/1604.06174. * [fx] fix lowercase naming conventions. * [fx] simplify test for ckpt. * [fx] fix test and algorithm bugs in activation checkpointing. * [fx] polish ckpt_test. * [fx] add rules to linearize computation graphs for searching. * [fx] remove chen_sqrt for sake of simplicity * [fx] remove chen_sqrt for sake of simplicity * [fx] remove chen_sqrt for sake of simplicity * [fx] remove chen_sqrt for sake of simplicity * [fx] fix inconsistencies. * [fx] fix MetaInfoProp. * [fx] fix MetaInfoProp. * [fx] consider MetaInfoProp for inplace operands. * [fx] consider MetaInfoProp for inplace operands. * [fx] consider MetaInfoProp for inplace operands. * [fx] consider MetaInfoProp for inplace operands. * [fx] consider MetaInfoProp for inplace operands. * [fx] add profiler for fx nodes. * [fx] add profiler for fx nodes. * [fx] add profiler for fx nodes. * [fx] add profiler for fx nodes. * [fx] add profiler for fx nodes. * [fx] add profiler for fx nodes. * [fx] add profiler for fx nodes. * [fx] fix error in tests. * [fx] unfix bug. * [fx] unfix bug.
2022-08-24 08:22:44 +00:00
from typing import Tuple, Union
import torch
from ..registry import meta_profiler_module
@meta_profiler_module.register(torch.nn.InstanceNorm1d)
@meta_profiler_module.register(torch.nn.InstanceNorm2d)
@meta_profiler_module.register(torch.nn.InstanceNorm3d)
@meta_profiler_module.register(torch.nn.LayerNorm)
@meta_profiler_module.register(torch.nn.GroupNorm)
@meta_profiler_module.register(torch.nn.BatchNorm1d)
@meta_profiler_module.register(torch.nn.BatchNorm2d)
@meta_profiler_module.register(torch.nn.BatchNorm3d)
def torch_nn_normalize(self: Union[torch.nn.LayerNorm, torch.nn.GroupNorm, torch.nn.BatchNorm1d, torch.nn.BatchNorm2d,
torch.nn.BatchNorm3d], input: torch.Tensor) -> Tuple[int, int]:
# adopted from https://github.com/microsoft/DeepSpeed/blob/master/deepspeed/profiling/flops_profiler/profiler.py#L615
has_affine = self.weight is not None
if self.training:
flops = input.numel() * (2 if has_affine else 1)
else:
flops = input.numel() * (5 if has_affine else 4)
macs = 0
return flops, macs
try:
import apex
meta_profiler_module.register(apex.normalization.FusedLayerNorm)(torch_nn_normalize)
meta_profiler_module.register(apex.normalization.FusedRMSNorm)(torch_nn_normalize)
meta_profiler_module.register(apex.normalization.MixedFusedLayerNorm)(torch_nn_normalize)
meta_profiler_module.register(apex.normalization.MixedFusedRMSNorm)(torch_nn_normalize)
except (ImportError, AttributeError):
pass