2022-08-25 15:11:13 +00:00
|
|
|
from functools import reduce
|
|
|
|
import operator
|
2022-08-24 08:22:44 +00:00
|
|
|
from typing import Any, Optional, Tuple
|
|
|
|
import torch
|
|
|
|
from ..registry import meta_profiler_function
|
|
|
|
|
|
|
|
|
|
|
|
@meta_profiler_function.register(torch.arange)
|
|
|
|
@meta_profiler_function.register(torch.finfo)
|
|
|
|
@meta_profiler_function.register(torch.permute)
|
|
|
|
@meta_profiler_function.register(torch.Tensor.permute)
|
|
|
|
@meta_profiler_function.register(torch.Tensor.repeat)
|
|
|
|
@meta_profiler_function.register(torch.index_select)
|
|
|
|
@meta_profiler_function.register(torch.Tensor.index_select)
|
|
|
|
@meta_profiler_function.register(torch.squeeze)
|
|
|
|
@meta_profiler_function.register(torch.Tensor.squeeze)
|
|
|
|
@meta_profiler_function.register(torch.unsqueeze)
|
|
|
|
@meta_profiler_function.register(torch.Tensor.unsqueeze)
|
|
|
|
@meta_profiler_function.register(torch.cat)
|
|
|
|
@meta_profiler_function.register(torch.concat)
|
|
|
|
@meta_profiler_function.register(torch.repeat_interleave)
|
|
|
|
@meta_profiler_function.register(torch.Tensor.repeat_interleave)
|
|
|
|
@meta_profiler_function.register(torch.flatten)
|
|
|
|
@meta_profiler_function.register(torch.Tensor.flatten)
|
|
|
|
@meta_profiler_function.register(torch.roll)
|
|
|
|
@meta_profiler_function.register(torch.full)
|
|
|
|
@meta_profiler_function.register(torch.Tensor.cpu)
|
|
|
|
@meta_profiler_function.register(torch.Tensor.cuda)
|
2022-08-25 15:11:13 +00:00
|
|
|
@meta_profiler_function.register(torch._assert)
|
2022-08-24 08:22:44 +00:00
|
|
|
def torch_zero_flops_op(*args, **kwargs) -> Tuple[int, int]:
|
|
|
|
flops = 0
|
|
|
|
macs = 0
|
|
|
|
return flops, macs
|
|
|
|
|
|
|
|
|
|
|
|
@meta_profiler_function.register(torch.where)
|
|
|
|
def torch_where(condition: torch.Tensor, x: Any, y: Any) -> Tuple[int, int]:
|
|
|
|
# torch.where returns the broadcasted tensor of condition, x, and y,
|
|
|
|
# so hack it by using addition
|
|
|
|
flops = condition.numel()
|
|
|
|
macs = 0
|
|
|
|
return flops, macs
|
|
|
|
|
|
|
|
|
|
|
|
@meta_profiler_function.register(torch.max)
|
|
|
|
def torch_max(input: torch.Tensor,
|
|
|
|
dim: int = None,
|
|
|
|
keepdim: bool = False,
|
|
|
|
*,
|
|
|
|
out: Optional[torch.Tensor] = None) -> Tuple[int, int]:
|
|
|
|
macs = 0
|
|
|
|
assert out is None, 'assigning value to out is not supported yet'
|
|
|
|
if dim is not None:
|
|
|
|
shape = list(input.shape)
|
|
|
|
shape.pop(int(dim))
|
2022-08-25 15:11:13 +00:00
|
|
|
flops = reduce(operator.mul, shape), macs
|
2022-08-24 08:22:44 +00:00
|
|
|
return flops, macs
|
|
|
|
else:
|
|
|
|
flops = input.numel()
|
|
|
|
return flops, macs
|