2022-08-24 08:22:44 +00:00
|
|
|
from operator import add, getitem
|
2022-07-07 08:22:00 +00:00
|
|
|
import torch
|
|
|
|
import torch.fx
|
2022-08-31 08:30:16 +00:00
|
|
|
from torch.fx.node import Node, Argument, Target
|
|
|
|
from torch.utils._pytree import tree_map
|
2022-07-07 08:22:00 +00:00
|
|
|
from typing import Any, Tuple, NamedTuple, Optional, Dict
|
|
|
|
from functools import reduce
|
|
|
|
from torch.fx._compatibility import compatibility
|
2022-07-26 06:31:00 +00:00
|
|
|
from torch.fx.immutable_collections import immutable_dict, immutable_list
|
2022-08-31 08:30:16 +00:00
|
|
|
from colossalai.fx.profiler import MetaProfile, MetaTensor, profile_function, profile_module, calculate_activation_size, profile_method
|
2022-07-07 08:22:00 +00:00
|
|
|
|
|
|
|
|
|
|
|
@compatibility(is_backward_compatible=True)
|
|
|
|
class TensorMetadata(NamedTuple):
|
|
|
|
# TensorMetadata is a structure containing pertinent information
|
|
|
|
# about a tensor within a PyTorch program.
|
|
|
|
|
|
|
|
shape: torch.Size
|
|
|
|
dtype: torch.dtype
|
|
|
|
requires_grad: bool
|
|
|
|
stride: Tuple[int]
|
|
|
|
numel: int
|
2022-07-26 06:31:00 +00:00
|
|
|
is_tensor: bool
|
2022-07-07 08:22:00 +00:00
|
|
|
# TODO: we can add a list of sharding spec here, and record the sharding
|
|
|
|
# behaviour by appending sharding spec into list.
|
|
|
|
|
|
|
|
|
|
|
|
def _extract_tensor_metadata(result: torch.Tensor) -> TensorMetadata:
|
|
|
|
"""
|
|
|
|
Extract a TensorMetadata NamedTuple describing `result`.
|
|
|
|
"""
|
|
|
|
shape = result.shape
|
|
|
|
dtype = result.dtype
|
|
|
|
requires_grad = result.requires_grad
|
|
|
|
stride = result.stride()
|
|
|
|
numel = result.numel()
|
2022-07-26 06:31:00 +00:00
|
|
|
is_tensor = True
|
2022-07-07 08:22:00 +00:00
|
|
|
|
2022-07-26 06:31:00 +00:00
|
|
|
return TensorMetadata(shape, dtype, requires_grad, stride, numel, is_tensor)
|
2022-07-07 08:22:00 +00:00
|
|
|
|
|
|
|
|
|
|
|
@compatibility(is_backward_compatible=True)
|
|
|
|
class MetaInfoProp(torch.fx.Interpreter):
|
|
|
|
"""
|
2022-08-24 08:22:44 +00:00
|
|
|
Execute an FX graph Node-by-Node with meta tensor and
|
|
|
|
record the shape, FLOPs, MACs and type of the result
|
2022-07-07 08:22:00 +00:00
|
|
|
into the corresponding node.
|
|
|
|
|
|
|
|
Usage:
|
|
|
|
BATCH_SIZE = 2
|
|
|
|
DIM_IN = 4
|
|
|
|
DIM_OUT = 16
|
|
|
|
model = torch.nn.Linear(DIM_IN, DIM_OUT)
|
|
|
|
input_sample = torch.rand(BATCH_SIZE, DIM_IN)
|
|
|
|
orig_output = model(input_sample)
|
|
|
|
gm = symbolic_trace(model)
|
|
|
|
MetaInfoProp(gm).run(input_sample)
|
|
|
|
|
|
|
|
for node in gm.graph.nodes:
|
|
|
|
print(node.name, node.meta['tensor_meta'].dtype,
|
|
|
|
node.meta['tensor_meta'].shape, node.meta['tensor_meta'].numel)
|
|
|
|
|
|
|
|
# output of above code is
|
|
|
|
# input_1 torch.float32 torch.Size([2, 4]) 8
|
|
|
|
# weight torch.float32 torch.Size([16, 4]) 64
|
|
|
|
# bias torch.float32 torch.Size([16]) 16
|
|
|
|
# linear torch.float32 torch.Size([2, 16]) 32
|
|
|
|
# output torch.float32 torch.Size([2, 16]) 32
|
|
|
|
Args:
|
|
|
|
module (GraphModule): The module to be executed
|
|
|
|
|
|
|
|
"""
|
|
|
|
|
2022-08-24 08:22:44 +00:00
|
|
|
@compatibility(is_backward_compatible=True)
|
|
|
|
def run(self, *args, initial_env: Optional[Dict[Node, Any]] = None, enable_io_processing: bool = True) -> Any:
|
|
|
|
"""
|
|
|
|
Add additional check for initial args to ensure all the tensor appears with `device='meta'`
|
|
|
|
"""
|
2022-08-31 08:30:16 +00:00
|
|
|
args = tree_map(lambda elem: MetaTensor(elem.to('meta')) if isinstance(elem, torch.Tensor) else elem, args)
|
2022-08-24 08:22:44 +00:00
|
|
|
return super().run(*args, initial_env, enable_io_processing)
|
|
|
|
|
|
|
|
@compatibility(is_backward_compatible=True)
|
2022-07-07 08:22:00 +00:00
|
|
|
def run_node(self, n: Node) -> Any:
|
2022-08-24 08:22:44 +00:00
|
|
|
"""
|
|
|
|
Run a specific node ``n`` and return the result.
|
|
|
|
Calls into placeholder, get_attr, call_function,
|
|
|
|
call_method, call_module, or output depending
|
|
|
|
on ``node.op``
|
|
|
|
|
|
|
|
Args:
|
|
|
|
n (Node): The Node to execute
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
Any: The result of executing ``n``
|
|
|
|
"""
|
|
|
|
result, profile = super().run_node(n)
|
|
|
|
profile: MetaProfile
|
2022-07-07 08:22:00 +00:00
|
|
|
|
|
|
|
def extract_tensor_meta(obj):
|
|
|
|
if isinstance(obj, torch.Tensor):
|
|
|
|
return _extract_tensor_metadata(obj)
|
|
|
|
else:
|
2022-07-26 06:31:00 +00:00
|
|
|
return TensorMetadata(None, None, False, None, 0, False)
|
2022-07-07 08:22:00 +00:00
|
|
|
|
2022-08-31 08:30:16 +00:00
|
|
|
meta = tree_map(extract_tensor_meta, result)
|
2022-07-26 06:31:00 +00:00
|
|
|
n.meta['tensor_meta'] = meta
|
2022-08-10 08:36:35 +00:00
|
|
|
|
2022-08-24 08:22:44 +00:00
|
|
|
# TODO: the attribute node_size should be removed in the future
|
|
|
|
setattr(n, 'node_size', profile.param + profile.activation)
|
|
|
|
setattr(n, '__param__', profile.param)
|
|
|
|
setattr(n, '__activation__', profile.activation)
|
|
|
|
setattr(n, '__flops__', profile.flops)
|
|
|
|
setattr(n, '__macs__', profile.macs)
|
2022-07-07 08:22:00 +00:00
|
|
|
n.meta['type'] = type(result)
|
|
|
|
return result
|
|
|
|
|
2022-08-24 08:22:44 +00:00
|
|
|
# Main Node running APIs
|
|
|
|
@compatibility(is_backward_compatible=True)
|
|
|
|
def placeholder(self, target: 'Target', args: Tuple[Argument, ...], kwargs: Dict[str, Any]) -> Any:
|
|
|
|
"""
|
|
|
|
Execute a ``placeholder`` node. Note that this is stateful:
|
|
|
|
``Interpreter`` maintains an internal iterator over
|
|
|
|
arguments passed to ``run`` and this method returns
|
|
|
|
next() on that iterator.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
target (Target): The call target for this node. See
|
|
|
|
`Node <https://pytorch.org/docs/master/fx.html#torch.fx.Node>`__ for
|
|
|
|
details on semantics
|
|
|
|
args (Tuple): Tuple of positional args for this invocation
|
|
|
|
kwargs (Dict): Dict of keyword arguments for this invocation
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
result (Any): The argument value that was retrieved
|
|
|
|
profile (MetaProfile): The meta profile of this node
|
|
|
|
"""
|
|
|
|
result = super().placeholder(target, args, kwargs)
|
|
|
|
# A placeholder node only has activation
|
|
|
|
return result, MetaProfile(0, calculate_activation_size(result), 0, 0)
|
|
|
|
|
|
|
|
@compatibility(is_backward_compatible=True)
|
|
|
|
def get_attr(self, target: 'Target', args: Tuple[Argument, ...], kwargs: Dict[str, Any]) -> Any:
|
|
|
|
"""
|
|
|
|
Execute a ``get_attr`` node. Will retrieve an attribute
|
|
|
|
value from the ``Module`` hierarchy of ``self.module``.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
target (Target): The call target for this node. See
|
|
|
|
`Node <https://pytorch.org/docs/master/fx.html#torch.fx.Node>`__ for
|
|
|
|
details on semantics
|
|
|
|
args (Tuple): Tuple of positional args for this invocation
|
|
|
|
kwargs (Dict): Dict of keyword arguments for this invocation
|
|
|
|
|
|
|
|
Return:
|
|
|
|
result (Any): The argument value that was retrieved
|
|
|
|
profile (MetaProfile): The meta profile of this node
|
|
|
|
"""
|
|
|
|
# A get_attr node never has parameters, activations, FLOPs, or MACs
|
|
|
|
return super().get_attr(target, args, kwargs), MetaProfile(0, 0, 0, 0)
|
|
|
|
|
|
|
|
@compatibility(is_backward_compatible=True)
|
|
|
|
def call_function(self, target: 'Target', args: Tuple[Argument, ...], kwargs: Dict[str, Any]) -> Any:
|
|
|
|
"""
|
|
|
|
Execute a ``call_function`` node with meta tensor and return the result and its meta profile.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
target (Target): The call target for this node. See
|
|
|
|
`Node <https://pytorch.org/docs/master/fx.html#torch.fx.Node>`__ for
|
|
|
|
details on semantics
|
|
|
|
args (Tuple): Tuple of positional args for this invocation
|
|
|
|
kwargs (Dict): Dict of keyword arguments for this invocation
|
|
|
|
|
|
|
|
Return
|
|
|
|
result (Any): The argument value that was retrieved
|
|
|
|
profile (MetaProfile): The meta profile of this node
|
|
|
|
"""
|
|
|
|
assert not isinstance(target, str)
|
|
|
|
return profile_function(target)(*args, **kwargs)
|
|
|
|
|
|
|
|
@compatibility(is_backward_compatible=True)
|
|
|
|
def call_method(self, target: 'Target', args: Tuple[Argument, ...], kwargs: Dict[str, Any]) -> Any:
|
|
|
|
"""
|
|
|
|
Execute a ``call_method`` node with meta tensor and return the result and its meta profile.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
target (Target): The call target for this node. See
|
|
|
|
`Node <https://pytorch.org/docs/master/fx.html#torch.fx.Node>`__ for
|
|
|
|
details on semantics
|
|
|
|
args (Tuple): Tuple of positional args for this invocation
|
|
|
|
kwargs (Dict): Dict of keyword arguments for this invocation
|
|
|
|
|
|
|
|
Return
|
|
|
|
result (Any): The argument value that was retrieved
|
|
|
|
profile (MetaProfile): The meta profile of this node
|
|
|
|
"""
|
|
|
|
return profile_method(target)(*args, **kwargs)
|
|
|
|
|
|
|
|
@compatibility(is_backward_compatible=True)
|
|
|
|
def call_module(self, target: 'Target', args: Tuple[Argument, ...], kwargs: Dict[str, Any]) -> Any:
|
|
|
|
"""
|
|
|
|
Execute a ``call_module`` node with meta tensor and return the result and its meta profile.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
target (Target): The call target for this node. See
|
|
|
|
`Node <https://pytorch.org/docs/master/fx.html#torch.fx.Node>`__ for
|
|
|
|
details on semantics
|
|
|
|
args (Tuple): Tuple of positional args for this invocation
|
|
|
|
kwargs (Dict): Dict of keyword arguments for this invocation
|
|
|
|
|
|
|
|
Return
|
|
|
|
result (Any): The argument value that was retrieved
|
|
|
|
profile (MetaProfile): The meta profile of this node
|
|
|
|
"""
|
|
|
|
# Retrieve executed args and kwargs values from the environment
|
|
|
|
# Execute the method and return the result
|
|
|
|
assert isinstance(target, str)
|
|
|
|
submod = self.fetch_attr(target)
|
|
|
|
return profile_module(submod)(*args, **kwargs)
|
|
|
|
|
|
|
|
@compatibility(is_backward_compatible=True)
|
|
|
|
def output(self, target: 'Target', args: Tuple[Argument, ...], kwargs: Dict[str, Any]) -> Any:
|
|
|
|
"""
|
|
|
|
Execute an ``output`` node. This really just retrieves
|
|
|
|
the value referenced by the ``output`` node and returns it.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
target (Target): The call target for this node. See
|
|
|
|
`Node <https://pytorch.org/docs/master/fx.html#torch.fx.Node>`__ for
|
|
|
|
details on semantics
|
|
|
|
args (Tuple): Tuple of positional args for this invocation
|
|
|
|
kwargs (Dict): Dict of keyword arguments for this invocation
|
|
|
|
|
|
|
|
Return:
|
|
|
|
Any: The return value referenced by the output node
|
|
|
|
"""
|
|
|
|
return args[0], MetaProfile(0, 0, 0, 0)
|
|
|
|
|
2022-07-07 08:22:00 +00:00
|
|
|
def propagate(self, *args):
|
|
|
|
"""
|
|
|
|
Run `module` via interpretation and return the result and
|
|
|
|
record the shape and type of each node.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
*args (Tensor): the sample input.
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
Any: The value returned from executing the Module
|
|
|
|
"""
|
|
|
|
return super().run(*args)
|