ColossalAI/applications/ColossalMoE/tests/test_moe_checkpoint.py

145 lines
5.0 KiB
Python
Raw Normal View History

from copy import deepcopy
2023-12-14 09:52:05 +00:00
import pytest
import torch
import torch.distributed as dist
from colossal_moe.models.mixtral_checkpoint import MixtralMoEHybridParallelCheckpointIO
2023-12-14 09:52:05 +00:00
from colossal_moe.models.mixtral_policy import MixtralForCausalLMPolicy
from torch.optim import Adam
from transformers.models.mixtral.configuration_mixtral import MixtralConfig
from transformers.models.mixtral.modeling_mixtral import MixtralForCausalLM
2023-12-14 09:52:05 +00:00
import colossalai
from colossalai.booster import Booster
from colossalai.booster.plugin.moe_hybrid_parallel_plugin import MoeHybridParallelPlugin
from colossalai.testing.utils import spawn
2023-12-14 09:52:05 +00:00
tokens, n_experts = 7, 4
hidden_size = 8
top_k = 2
2023-12-14 09:52:05 +00:00
def check_model_equal(model1, model2):
assert set(model1.state_dict().keys()) == set(model2.state_dict().keys())
for p1, p2 in zip(model1.parameters(), model2.parameters()):
assert torch.equal(p1.half(), p2.half())
def get_optimizer_snapshot(optim):
state = {id(k): deepcopy(v) for k, v in optim.state.items()}
param_groups = []
for group in optim.param_groups:
params = [id(p) for p in group["params"]]
new_group = {"params": params}
for k, v in group.items():
if k != "params":
new_group[k] = v
param_groups.append(new_group)
2023-12-14 09:52:05 +00:00
return {
"state": state,
"param_groups": param_groups,
2023-12-14 09:52:05 +00:00
}
def check_optimizer_snapshot_equal(snapshot1, snapshot2):
# check param_groups
assert len(snapshot1["param_groups"]) == len(snapshot2["param_groups"])
for group1, group2 in zip(snapshot1["param_groups"], snapshot2["param_groups"]):
assert set(group1.keys()) == set(group2.keys())
for k in group1.keys():
assert group1[k] == group2[k]
# check state
assert set(snapshot1["state"].keys()) == set(
snapshot2["state"].keys()
), f"{snapshot1['state'].keys()}, {snapshot2['state'].keys()}"
for pid in snapshot1["state"].keys():
state1, state2 = snapshot1["state"][pid], snapshot2["state"][pid]
assert set(state1.keys()) == set(state2.keys())
for k in state1.keys():
if isinstance(state1[k], torch.Tensor):
assert torch.equal(state1[k], state2[k]), f"{k}, {state1[k]}, {state2[k]}"
else:
assert state1[k] == state2[k]
def check_mixtral_moe_layer():
torch.cuda.set_device(dist.get_rank())
2023-12-14 09:52:05 +00:00
config = MixtralConfig(
hidden_size=hidden_size,
intermediate_size=hidden_size * 2,
num_local_experts=n_experts,
num_experts_per_tok=top_k,
num_attention_heads=2,
num_key_value_heads=2,
2023-12-14 09:52:05 +00:00
)
torch.manual_seed(0)
input_ids = torch.randint(0, 100, (2, tokens)).cuda()
orig_model = MixtralForCausalLM(config).cuda()
model = deepcopy(orig_model)
optimizer = Adam(model.parameters(), lr=1e-3)
plugin = MoeHybridParallelPlugin(
2023-12-14 09:52:05 +00:00
tp_size=1,
pp_size=2,
ep_size=2,
2023-12-14 09:52:05 +00:00
custom_policy=MixtralForCausalLMPolicy(),
checkpoint_io=MixtralMoEHybridParallelCheckpointIO,
microbatch_size=1,
zero_stage=1,
2023-12-14 09:52:05 +00:00
)
booster = Booster(plugin=plugin)
model, optimizer, *_ = booster.boost(model=model, optimizer=optimizer)
# initialize grads
data_iter = iter(
[{"input_ids": input_ids, "attention_mask": torch.ones_like(input_ids), "labels": input_ids.clone()}]
)
booster.execute_pipeline(
data_iter,
model,
lambda outputs, inputs: outputs.loss,
optimizer,
)
2023-12-14 09:52:05 +00:00
# check save model
booster.save_model(model, "mixtral_model", shard=True)
dist.barrier()
2023-12-14 09:52:05 +00:00
if dist.get_rank() == 0:
saved_model = MixtralForCausalLM.from_pretrained("mixtral_model").cuda()
check_model_equal(orig_model, saved_model)
saved_model.save_pretrained("mixtral_hf_model")
2023-12-14 09:52:05 +00:00
dist.barrier()
# check load model
new_model = MixtralForCausalLM(config).cuda()
new_optimizer = Adam(new_model.parameters(), lr=1e-3)
new_model, new_optimizer, *_ = booster.boost(model=new_model, optimizer=new_optimizer)
booster.load_model(new_model, "mixtral_hf_model")
check_model_equal(model, new_model)
# check save optimizer
optimizer.step()
snapshot = get_optimizer_snapshot(optimizer.unwrap())
booster.save_optimizer(optimizer, "mixtral_optim", shard=True)
2023-12-14 09:52:05 +00:00
dist.barrier()
# reset optimizer state
for state in optimizer.unwrap().state.values():
for v in state.values():
if isinstance(v, torch.Tensor):
v.zero_()
booster.load_optimizer(optimizer, "mixtral_optim")
loaded_snapshot = get_optimizer_snapshot(optimizer.unwrap())
check_optimizer_snapshot_equal(snapshot, loaded_snapshot)
2023-12-14 09:52:05 +00:00
def run_dist(rank: int, world_size: int, port: int):
colossalai.launch({}, rank, world_size, "localhost", port)
check_mixtral_moe_layer()
2023-12-14 09:52:05 +00:00
@pytest.mark.parametrize("world_size", [4])
def test_mixtral_moe_layer(world_size: int):
spawn(run_dist, world_size)
2023-12-14 09:52:05 +00:00
if __name__ == "__main__":
test_mixtral_moe_layer(4)