ColossalAI/colossalai/tensor/optim/colo_optimizer.py

89 lines
3.8 KiB
Python
Raw Normal View History

from typing import List, Union, Mapping, Dict, Any
import torch.optim as optim
from torch import Tensor
from colossalai.tensor.colo_tensor import ColoTensor
class ColoOptimizer(optim.Optimizer):
def __init__(self, named_params: Mapping[str, Union[Tensor, ColoTensor]], optimizer_class, *optimizer_args,
**optimizer_kwargs):
"""
ColoOptimizer collects all tensors in type of ColoTensor and torch.Tensor,
then use these tensors as ``params`` for optimizers
Args:
named_params (Dict[str, Union[Tensor, ShardedTensor]]) : a Dict
of parameters, where key is the parameter key, value is either
Tensor or ColoTensor. This usually used in
conjunction with model.named_parameters(), the same as PyTorch.
optimizer_class (torch.optim.Optimizer): the Optimizer to use
locally, i.e. torch.optim.SGD, torch.optim.Adagrad, etc.
*optimizer_args: the arguments to initialize the optimizer.
**optimizer_kwargs: the key-word arguments to initialize the optimizer.
"""
tensors: List[Tensor] = []
for value in named_params.values():
tensors.append(value)
self.named_params = named_params
self._optim = optimizer_class(tensors, *optimizer_args, **optimizer_kwargs)
self.param_groups = self._optim.param_groups
self.state = self._optim.state
def zero_grad(self, set_to_none: bool = False): # type: ignore[override]
r"""Sets the gradients of all optimized :class:`torch.Tensor` s to zero.
Args:
set_to_none (bool): instead of setting to zero, set the grads to None.
This will in general have lower memory footprint, and can modestly improve performance.
However, it changes certain behaviors. For example:
1. When the user tries to access a gradient and perform manual ops on it,
a None attribute or a Tensor full of 0s will behave differently.
2. If the user requests ``zero_grad(set_to_none=True)`` followed by a backward pass, ``.grad``\ s
are guaranteed to be None for params that did not receive a gradient.
3. ``torch.optim`` optimizers have a different behavior if the gradient is 0 or None
(in one case it does the step with a gradient of 0 and in the other it skips
the step altogether).
"""
self._optim.zero_grad(set_to_none)
def step(self, closure=None):
r"""Performs a single optimization step (parameter update).
Args:
closure (callable): A closure that reevaluates the model and
returns the loss. Optional for most optimizers.
.. note::
Unless otherwise specified, this function should not modify the
``.grad`` field of the parameters.
"""
self._optim.step(closure)
def state_dict(self) -> Dict[str, Any]:
"""
Returned state and param_groups will contain parameter keys
instead of parameter indices like torch.optim.Optimizer.
"""
# TODO: implement state_dict
raise NotImplementedError("ColoOptimizer state_dict not implemented yet!")
def load_state_dict(self, state_dict: Mapping[str, Any]):
r"""Loads the ColoOptimizer state.
Args:
state_dict (dict): ColoOptimizer state. Should be an object returned
from a call to :meth:`state_dict`.
"""
# TODO: implement load_state_dict
raise NotImplementedError("ColoOptimizer load_state_dict not implemented yet!")
def add_param_group(self, param_group: Any):
r"""Add a new param group
"""
# TODO: implement add_param_group
raise NotImplementedError("ColoOptimizer add_param_group not implemented yet!")