mirror of https://github.com/hpcaitech/ColossalAI
aibig-modeldata-parallelismdeep-learningdistributed-computingfoundation-modelsheterogeneous-traininghpcinferencelarge-scalemodel-parallelismpipeline-parallelism
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
53 lines
1.5 KiB
53 lines
1.5 KiB
1 year ago
|
import torch
|
||
|
|
||
|
from .builder import Builder
|
||
|
from .utils import append_nvcc_threads
|
||
|
|
||
|
|
||
|
class SmoothquantBuilder(Builder):
|
||
|
NAME = "cu_smoothquant"
|
||
|
PREBUILT_IMPORT_PATH = "colossalai._C.cu_smoothquant"
|
||
|
|
||
|
def __init__(self):
|
||
|
super().__init__(name=SmoothquantBuilder.NAME, prebuilt_import_path=SmoothquantBuilder.PREBUILT_IMPORT_PATH)
|
||
|
|
||
|
def include_dirs(self):
|
||
|
ret = [self.csrc_abs_path("smoothquant"), self.get_cuda_home_include()]
|
||
|
return ret
|
||
|
|
||
|
def sources_files(self):
|
||
|
ret = [
|
||
|
self.csrc_abs_path(fname)
|
||
|
for fname in [
|
||
|
"smoothquant/binding.cpp",
|
||
|
"smoothquant/linear.cu",
|
||
|
]
|
||
|
]
|
||
|
return ret
|
||
|
|
||
|
def cxx_flags(self):
|
||
|
return ["-O3"] + self.version_dependent_macros
|
||
|
|
||
|
def nvcc_flags(self):
|
||
|
compute_capability = torch.cuda.get_device_capability()
|
||
|
cuda_arch = compute_capability[0] * 100 + compute_capability[1] * 10
|
||
|
|
||
|
extra_cuda_flags = [
|
||
|
"-v",
|
||
|
f"-DCUDA_ARCH={cuda_arch}",
|
||
|
"-std=c++17",
|
||
|
"-U__CUDA_NO_HALF_OPERATORS__",
|
||
|
"-U__CUDA_NO_HALF_CONVERSIONS__",
|
||
|
"-U__CUDA_NO_HALF2_OPERATORS__",
|
||
|
"-DTHRUST_IGNORE_CUB_VERSION_CHECK",
|
||
|
]
|
||
|
|
||
|
ret = ["-O3", "--use_fast_math"] + self.version_dependent_macros + extra_cuda_flags
|
||
|
return append_nvcc_threads(ret)
|
||
|
|
||
|
def builder(self):
|
||
|
try:
|
||
|
super().builder()
|
||
|
except:
|
||
|
warnings.warn("build smoothquant lib not successful")
|