mirror of https://github.com/hpcaitech/ColossalAI
125 lines
4.1 KiB
Python
125 lines
4.1 KiB
Python
|
|
||
|
from collections import OrderedDict
|
||
|
from typing import Any, Callable, Dict, List, Tuple, Union
|
||
|
|
||
|
import torch
|
||
|
import torch.nn.functional as F
|
||
|
|
||
|
|
||
|
def get_gradient_predivide_factor(world_size: int) -> float:
|
||
|
factor: int = 1
|
||
|
while world_size % factor == 0 and world_size / factor > factor:
|
||
|
factor *= 2
|
||
|
return float(factor)
|
||
|
|
||
|
|
||
|
def get_shard(tensor: torch.Tensor, rank: int, world_size: int) -> Tuple[torch.Tensor, int]:
|
||
|
"""Return the local shard of a full tensor."""
|
||
|
# Shard using torch.chunk to match all-gather/reduce-scatter.
|
||
|
chunks = list(torch.flatten(tensor).chunk(world_size))
|
||
|
while len(chunks) < world_size:
|
||
|
chunks.append(chunks[0].new_empty(0))
|
||
|
|
||
|
# Determine number of padding elements.
|
||
|
num_to_pad = chunks[0].numel() - chunks[rank].numel()
|
||
|
assert num_to_pad >= 0, num_to_pad
|
||
|
|
||
|
shard = chunks[rank].clone()
|
||
|
if num_to_pad > 0:
|
||
|
shard = F.pad(shard, [0, num_to_pad])
|
||
|
return shard, num_to_pad
|
||
|
|
||
|
|
||
|
def free_storage(data: torch.Tensor) -> None:
|
||
|
"""Free underlying storage of a Tensor."""
|
||
|
if data.storage().size() > 0:
|
||
|
# Since we're modifying the Tensor's Storage directly, make sure the Tensor
|
||
|
# is the sole occupant of the Storage.
|
||
|
assert data.storage_offset() == 0
|
||
|
data.storage().resize_(0)
|
||
|
|
||
|
|
||
|
@torch.no_grad()
|
||
|
def alloc_storage(data: torch.Tensor, size: torch.Size) -> None:
|
||
|
"""Allocate storage for a tensor."""
|
||
|
if data.storage().size() == size.numel(): # no need to reallocate
|
||
|
return
|
||
|
assert data.storage().size() == 0
|
||
|
data.storage().resize_(size.numel())
|
||
|
|
||
|
|
||
|
def cast_trensor_to_fp16(tensor: torch.Tensor) -> torch.Tensor:
|
||
|
if tensor.dtype is torch.float32:
|
||
|
out = tensor.half()
|
||
|
if tensor.is_leaf:
|
||
|
out.requires_grad = tensor.requires_grad
|
||
|
return out
|
||
|
return tensor
|
||
|
|
||
|
|
||
|
def cast_trensor_to_fp32(tensor: torch.Tensor) -> torch.Tensor:
|
||
|
if tensor.dtype is torch.float16:
|
||
|
out = tensor.float()
|
||
|
if tensor.is_leaf:
|
||
|
out.requires_grad = tensor.requires_grad
|
||
|
return out
|
||
|
return tensor
|
||
|
|
||
|
|
||
|
def apply_to_tensors(x: Any, fn: Callable):
|
||
|
if torch.is_tensor(x):
|
||
|
return fn(x)
|
||
|
elif isinstance(x, list):
|
||
|
return [apply_to_tensors(t, fn) for t in x]
|
||
|
elif isinstance(x, tuple):
|
||
|
return tuple(apply_to_tensors(t, fn) for t in x)
|
||
|
elif isinstance(x, dict):
|
||
|
return {key: apply_to_tensors(val, fn) for key, val in x.items()}
|
||
|
else:
|
||
|
return x
|
||
|
|
||
|
|
||
|
def cast_float_arguments(fn: Callable, *args: Any, **kwargs: Any) -> Tuple[Any, Any]:
|
||
|
return apply_to_tensors(args, fn), apply_to_tensors(kwargs, fn)
|
||
|
|
||
|
|
||
|
def chunk_and_pad(tensor: torch.Tensor, num_chunks: int) -> List[torch.Tensor]:
|
||
|
"""Chunk a given Tensor into num_chunks parts and add any necessary padding."""
|
||
|
chunks = list(torch.flatten(tensor).chunk(num_chunks))
|
||
|
# torch.chunk may return fewer than num_chunks chunks, pad accordingly.
|
||
|
num_pad_for_partial_chunk = chunks[0].numel() - chunks[-1].numel()
|
||
|
if num_pad_for_partial_chunk > 0:
|
||
|
chunks[-1] = F.pad(chunks[-1], [0, num_pad_for_partial_chunk])
|
||
|
if len(chunks) < num_chunks:
|
||
|
chunks.extend([torch.zeros_like(chunks[0]) for _ in range(num_chunks - len(chunks))])
|
||
|
return chunks
|
||
|
|
||
|
|
||
|
def assert_in_engine(cond: Any, s: Any) -> None:
|
||
|
"""Used in backward context to make sure error is printed."""
|
||
|
if not cond:
|
||
|
print(s)
|
||
|
raise AssertionError
|
||
|
|
||
|
|
||
|
def replace_state_dict_prefix(
|
||
|
state_dict: Union[Dict[str, torch.Tensor], "OrderedDict[str, torch.Tensor]"], old_prefix: str, new_prefix: str
|
||
|
) -> None:
|
||
|
"""
|
||
|
Replace all keys that match a given old_prefix with a new_prefix (in-place).
|
||
|
|
||
|
Usage::
|
||
|
|
||
|
state_dict = {"layer.xyz": torch.tensor(1)}
|
||
|
replace_state_dict_prefix(state_dict, "layer.", "module.layer.")
|
||
|
assert state_dict == {"module.layer.xyz": torch.tensor(1)}
|
||
|
"""
|
||
|
if old_prefix == new_prefix:
|
||
|
raise ValueError("old_prefix and new_prefix must be distinct")
|
||
|
for key in list(state_dict.keys()):
|
||
|
if not key.startswith(old_prefix):
|
||
|
continue
|
||
|
new_key = new_prefix + key[len(old_prefix):]
|
||
|
state_dict[new_key] = state_dict[key]
|
||
|
del state_dict[key]
|