ColossalAI/colossalai/booster/plugin/hybrid_parallel_plugin.py

335 lines
15 KiB
Python
Raw Normal View History

import random
from contextlib import nullcontext
from typing import Any, Callable, Iterator, List, Optional, Tuple, Union
import numpy as np
import torch
import torch.distributed as dist
from torch.distributed import ProcessGroup
from torch.nn import Module
from torch.optim import Optimizer
from torch.optim.lr_scheduler import _LRScheduler as LRScheduler
from torch.utils.data import DataLoader
from torch.utils.data.distributed import DistributedSampler
from colossalai.amp.naive_amp.mixed_precision_optimizer import MixedPrecisionOptimizer
from colossalai.checkpoint_io import CheckpointIO
from colossalai.cluster import ProcessGroupMesh
from colossalai.interface import ModelWrapper, OptimizerWrapper
from colossalai.pipeline.schedule import OneForwardOneBackwardSchedule
from colossalai.pipeline.stage_manager import PipelineStageManager
from colossalai.shardformer import ShardConfig, ShardFormer
from colossalai.zero.low_level import LowLevelZeroOptimizer
from .pp_plugin_base import PipelinePluginBase
DP_AXIS, PP_AXIS, TP_AXIS = 0, 1, 2
class HybridParallelModule(ModelWrapper):
def __init__(self, module: Module, precision: str, shard_config: ShardConfig, dp_group: ProcessGroup) -> None:
self.stage_manager = shard_config.pipeline_stage_manager
self.dp_group = dp_group
shardformer = ShardFormer(shard_config)
module, self.shared_params = shardformer.optimize(module)
# TODO(ver217): add input type cast
self.shared_param_process_groups = []
for shared_param in self.shared_params:
if len(shared_param) > 0:
self.shared_param_process_groups.append(
self.stage_manager.init_process_group_by_stages(list(shared_param.keys())))
if precision == 'fp16':
module = module.half().cuda()
elif precision == 'bf16':
module = module.to(dtype=torch.bfloat16).cuda()
else:
module = module.cuda() # train without AMP
# TODO(ver217): support TP+DP
super().__init__(module)
def sync_shared_params(self):
for shared_param, group in zip(self.shared_params, self.shared_param_process_groups):
param = shared_param[self.stage_manager.stage]
dist.all_reduce(param.grad, group=group)
def no_sync(self) -> Iterator[None]:
# no sync grads across data parallel
return nullcontext()
def sync_grads(self):
# sync grad across data parallel
if self.dp_group.size() == 1:
return
for p in self.module.parameters():
if p.grad is not None:
dist.all_reduce(p.grad, group=self.dp_group)
p.grad.div_(self.dp_group.size())
def init_pipeline_optimizer(optim: Optimizer, model: Module):
params = set(model.parameters())
new_param_groups = []
for group in optim.param_groups:
params = [p for p in group['params'] if p in params]
new_param_groups.append({**group, 'params': params})
optim.__setstate__({'param_groups': new_param_groups})
class HybridParallelNaiveOptimizer(OptimizerWrapper):
def __init__(self, optim: Optimizer, model: Module, use_pipeline: bool):
if use_pipeline:
init_pipeline_optimizer(optim, model)
super().__init__(optim)
class HybridParallelAMPOptimizer(MixedPrecisionOptimizer):
def __init__(self,
optim: Optimizer,
model: Module,
use_pipeline: bool,
precision: str = 'fp16',
initial_scale: float = 2**16,
min_scale: float = 1,
growth_factor: float = 2,
backoff_factor: float = 0.5,
growth_interval: int = 1000,
hysteresis: int = 2,
max_scale: float = 2**32,
max_norm: float = 0):
if use_pipeline:
init_pipeline_optimizer(optim, model)
super().__init__(optim, precision, initial_scale, min_scale, growth_factor, backoff_factor, growth_interval,
hysteresis, max_scale, max_norm)
class HybridParallelZeroOptimizer(LowLevelZeroOptimizer):
def __init__(
self,
optimizer: Optimizer,
model: Module,
use_pipeline: bool,
initial_scale: int = 2**16, # grad scaler config
min_scale: int = 1,
growth_factor: float = 2.,
backoff_factor: float = .5,
growth_interval: int = 2000,
hysteresis: int = 2,
max_scale: int = 2**24,
clip_grad_norm: float = 0.0, # grad clipping
verbose: bool = False,
reduce_bucket_size: int = 1024 * 1024, # communication
communication_dtype: Optional[torch.dtype] = None,
overlap_communication: bool = True,
partition_grad: bool = False, # stage 2 flag
cpu_offload: bool = False, # cpu offload
dp_process_group: Optional[ProcessGroup] = None, # the dp pg for comm
tp_process_group: Optional[ProcessGroup] = None, # if using tp
forced_dtype: Optional[torch.dtype] = None):
if use_pipeline:
init_pipeline_optimizer(optimizer, model)
super().__init__(optimizer, initial_scale, min_scale, growth_factor, backoff_factor, growth_interval,
hysteresis, max_scale, clip_grad_norm, verbose, reduce_bucket_size, communication_dtype,
overlap_communication, partition_grad, cpu_offload, dp_process_group, tp_process_group,
forced_dtype)
class HybridParallelPlugin(PipelinePluginBase):
def __init__(
self,
tp_size: int,
pp_size: int,
precision: str = 'fp16',
zero_stage: int = 0,
cpu_offload: bool = False,
enable_fused_normalization: bool = False,
num_microbatches: Optional[int] = None,
initial_scale: float = 2**16,
min_scale: float = 1,
growth_factor: float = 2,
backoff_factor: float = 0.5,
growth_interval: int = 1000,
hysteresis: int = 2,
max_scale: float = 2**32,
max_norm: float = 0,
) -> None:
super().__init__()
assert dist.get_world_size() % (
tp_size * pp_size
) == 0, f'world size {dist.get_world_size()} is not divisible by tp_size {tp_size} * pp_size {pp_size}'
# TODO(ver217): support zero
assert zero_stage == 0, 'zero is not support yet'
self.tp_size = tp_size
self.pp_size = pp_size
self.dp_size = dist.get_world_size() // (tp_size * pp_size)
self.precision = precision
self.zero_stage = zero_stage
self.cpu_offload = cpu_offload
self.enable_fused_normalization = enable_fused_normalization
self.pg_mesh = ProcessGroupMesh(self.dp_size, self.pp_size, self.tp_size)
self.stage_manager = None
self.schedule = None
assert zero_stage in (0, 1, 2)
if self.pp_size > 1:
assert num_microbatches is not None, 'num_microbatches must be specified when using pipeline parallelism'
assert self.zero_stage <= 1, 'zero stage must be 0 or 1 when using pipeline parallelism'
self.stage_manager = PipelineStageManager(self.pg_mesh, PP_AXIS)
self.schedule = OneForwardOneBackwardSchedule(num_microbatches, self.stage_manager)
self.tp_group = self.pg_mesh.get_group_along_axis(TP_AXIS)
self.dp_group = self.pg_mesh.get_group_along_axis(DP_AXIS)
self.shard_config = ShardConfig(tensor_parallel_process_group=self.tp_group,
pipeline_stage_manager=self.stage_manager,
enable_tensor_parallelism=self.tp_size > 1,
enable_fused_normalization=self.enable_fused_normalization)
self.amp_config = dict(
initial_scale=initial_scale,
growth_factor=growth_factor,
backoff_factor=backoff_factor,
growth_interval=growth_interval,
hysteresis=hysteresis,
min_scale=min_scale,
max_scale=max_scale,
)
self.max_norm = max_norm
@property
def enable_pipeline_parallelism(self) -> bool:
return self.pp_size > 1
def supported_devices(self) -> List[str]:
return ['cuda']
def supported_precisions(self) -> List[str]:
return ['fp16', 'bf16', 'fp32']
def control_device(self) -> bool:
return True
def control_precision(self) -> bool:
return True
def support_no_sync(self) -> bool:
return False
def control_checkpoint_io(self) -> bool:
return True
def configure(
self,
model: Module,
optimizer: Optional[Optimizer] = None,
criterion: Optional[Callable] = None,
dataloader: Optional[DataLoader] = None,
lr_scheduler: Optional[LRScheduler] = None,
) -> Tuple[Module, OptimizerWrapper, Callable, DataLoader, LRScheduler]:
if not isinstance(model, ModelWrapper):
model = HybridParallelModule(model, self.precision, self.shard_config, self.dp_group)
if optimizer is not None and not isinstance(optimizer, OptimizerWrapper):
if self.zero_stage == 0:
if self.precision in ['fp16', 'bf16']:
optimizer = HybridParallelAMPOptimizer(optimizer,
model,
use_pipeline=self.enable_pipeline_parallelism,
precision=self.precision,
max_norm=self.max_norm,
**self.amp_config)
else:
optimizer = HybridParallelNaiveOptimizer(optimizer,
model,
use_pipeline=self.enable_pipeline_parallelism)
else:
optimizer = HybridParallelZeroOptimizer(optimizer,
model,
use_pipeline=self.enable_pipeline_parallelism,
partition_grad=(self.zero_stage == 2),
cpu_offload=self.cpu_offload,
dp_process_group=self.dp_group,
tp_process_group=self.tp_group,
verbose=True,
clip_grad_norm=self.max_norm,
**self.amp_config)
return model, optimizer, criterion, dataloader, lr_scheduler
def execute_pipeline(self,
data_iter: Iterator,
model: HybridParallelModule,
criterion: Callable[[Any, Any], torch.Tensor],
optimizer: Union[HybridParallelNaiveOptimizer, HybridParallelAMPOptimizer,
HybridParallelZeroOptimizer],
return_loss: bool = True,
return_outputs: bool = False) -> dict:
assert self.enable_pipeline_parallelism, 'pipeline parallelism is not enabled'
# return loss or outputs if needed
ctx = optimizer.no_sync() if isinstance(optimizer, HybridParallelZeroOptimizer) else model.no_sync()
with ctx:
outputs = self.schedule.forward_backward_step(model, optimizer, data_iter, criterion, return_loss,
return_outputs)
model.sync_shared_params()
if isinstance(optimizer, HybridParallelZeroOptimizer):
optimizer.sync_grad()
else:
model.sync_grads()
return outputs
def prepare_dataloader(self,
dataset,
batch_size,
shuffle=False,
seed=1024,
drop_last=False,
pin_memory=False,
num_workers=0,
**kwargs):
r"""
Prepare a dataloader for distributed training. The dataloader will be wrapped by
`torch.utils.data.DataLoader` and `torch.utils.data.DistributedSampler`.
Args:
dataset (`torch.utils.data.Dataset`): The dataset to be loaded.
shuffle (bool, optional): Whether to shuffle the dataset. Defaults to False.
seed (int, optional): Random worker seed for sampling, defaults to 1024.
add_sampler: Whether to add ``DistributedDataParallelSampler`` to the dataset. Defaults to True.
drop_last (bool, optional): Set to True to drop the last incomplete batch, if the dataset size
is not divisible by the batch size. If False and the size of dataset is not divisible by
the batch size, then the last batch will be smaller, defaults to False.
pin_memory (bool, optional): Whether to pin memory address in CPU memory. Defaults to False.
num_workers (int, optional): Number of worker threads for this dataloader. Defaults to 0.
kwargs (dict): optional parameters for ``torch.utils.data.DataLoader``, more details could be found in
`DataLoader <https://pytorch.org/docs/stable/_modules/torch/utils/data/dataloader.html#DataLoader>`_.
Returns:
:class:`torch.utils.data.DataLoader`: A DataLoader used for training or testing.
"""
_kwargs = kwargs.copy()
sampler = DistributedSampler(dataset,
num_replicas=self.pg_mesh.size(DP_AXIS),
rank=self.pg_mesh.coordinate(DP_AXIS),
shuffle=shuffle)
# Deterministic dataloader
def seed_worker(worker_id):
worker_seed = seed
np.random.seed(worker_seed)
torch.manual_seed(worker_seed)
random.seed(worker_seed)
return DataLoader(dataset,
batch_size=batch_size,
sampler=sampler,
worker_init_fn=seed_worker,
drop_last=drop_last,
pin_memory=pin_memory,
num_workers=num_workers,
**_kwargs)
def get_checkpoint_io(self) -> CheckpointIO:
return None
def no_sync(self, model: Module) -> Iterator[None]:
raise NotImplementedError