You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
ColossalAI/examples/images/resnet/eval.py

48 lines
1.5 KiB

import argparse
import torch
import torchvision
import torchvision.transforms as transforms
# ==============================
# Parse Arguments
# ==============================
parser = argparse.ArgumentParser()
parser.add_argument("-e", "--epoch", type=int, default=80, help="resume from the epoch's checkpoint")
parser.add_argument("-c", "--checkpoint", type=str, default="./checkpoint", help="checkpoint directory")
args = parser.parse_args()
# ==============================
# Prepare Test Dataset
# ==============================
# CIFAR-10 dataset
test_dataset = torchvision.datasets.CIFAR10(root="./data/", train=False, transform=transforms.ToTensor())
# Data loader
test_loader = torch.utils.data.DataLoader(dataset=test_dataset, batch_size=128, shuffle=False)
# ==============================
# Load Model
# ==============================
model = torchvision.models.resnet18(num_classes=10).cuda()
state_dict = torch.load(f"{args.checkpoint}/model_{args.epoch}.pth")
model.load_state_dict(state_dict)
# ==============================
# Run Evaluation
# ==============================
model.eval()
with torch.no_grad():
correct = 0
total = 0
for images, labels in test_loader:
images = images.cuda()
labels = labels.cuda()
outputs = model(images)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
print("Accuracy of the model on the test images: {} %".format(100 * correct / total))