ColossalAI/colossalai/legacy/moe/layer/experts.py

162 lines
6.1 KiB
Python
Raw Normal View History

import math
from typing import Callable, Optional, Tuple
import torch
import torch.nn as nn
from colossalai.kernel.triton.llama_act_combine_kernel import HAS_TRITON
2024-07-16 09:08:31 +00:00
from colossalai.legacy.moe.manager import MOE_MANAGER
from colossalai.legacy.moe.utils import get_activation
from colossalai.moe._operation import EPGradScalerIn, EPGradScalerOut
from colossalai.shardformer.layer.utils import Randomizer
[MoE/ZeRO] Moe refactor with zero refactor (#5821) * [moe] removed openmoe-coupled code and rectify mixstral code (#5471) * [Feauture] MoE refractor; Intergration with Mixtral (#5682) * cherry pick from refractor-moe branch * tests passed * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * support ep + zero --------- Co-authored-by: Edenzzzz <wtan45@wisc.edu> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> * add mixtral auto policy & move pipeline forward code to modeling folder * [moe refactor] modify kernel test without Route Class * [moe refactor] add moe tensor test path environment variable to github workflow * fix typos * fix moe test bug due to the code rebase * [moe refactor] fix moe zero test, and little bug in low level zero * fix typo * add moe tensor path to github workflow * remove some useless code * fix typo & unify global variable XX_AXIS logic without using -1 * fix typo & prettifier the code * remove print code & support zero 2 test * remove useless code * reanme function * fix typo * fix typo * Further improve the test code * remove print code * [moe refactor] change test model from fake moe model to mixtral moe layer and remove useless test * [moe refactor] skip some unit test which will be refactored later * [moe refactor] fix unit import error * [moe refactor] fix circular import issues * [moe refactor] remove debug code * [moe refactor] update github workflow * [moe/zero] refactor low level optimizer (#5767) * [zero] refactor low level optimizer * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci --------- Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> * [Feature] MoE refactor with newest version of ZeRO (#5801) * [zero] remove redundant members in BucketStore (#5802) * [zero] align api with previous version * [Moe/Zero] Update MoeHybridParallelPlugin with refactored ZeRO and Fix Zero bug (#5819) * [moe refactor] update unit test with the refactored ZeRO and remove useless test * move moe checkpoint to checkpoint folder and exchange global axis to class member * update moe hybrid parallel plugin with newest version of zero & fix zero working/master params bug * fix zero unit test * Add an assertion to prevent users from using it incorrectly * [hotfix]Solve the compatibility issue of zero refactor (#5823) * [moe refactor] update unit test with the refactored ZeRO and remove useless test * move moe checkpoint to checkpoint folder and exchange global axis to class member * update moe hybrid parallel plugin with newest version of zero & fix zero working/master params bug * fix zero unit test * Add an assertion to prevent users from using it incorrectly * Modify function parameter names to resolve compatibility issues * [zero] fix missing hook removal (#5824) * [MoE] Resolve .github conflict (#5829) * [Fix/Example] Fix Llama Inference Loading Data Type (#5763) * [fix/example] fix llama inference loading dtype * revise loading dtype of benchmark llama3 * [release] update version (#5752) * [release] update version * [devops] update compatibility test * [devops] update compatibility test * [devops] update compatibility test * [devops] update compatibility test * [test] fix ddp plugin test * [test] fix gptj and rpc test * [devops] fix cuda ext compatibility * [inference] fix flash decoding test * [inference] fix flash decoding test * fix (#5765) * [test] Fix/fix testcase (#5770) * [fix] branch for fix testcase; * [fix] fix test_analyzer & test_auto_parallel; * [fix] remove local change about moe; * [fix] rm local change moe; * [Hotfix] Add missing init file in inference.executor (#5774) * [CI/tests] simplify some test case to reduce testing time (#5755) * [ci/tests] simplify some test case to reduce testing time * [ci/tests] continue to remove test case to reduce ci time cost * restore some test config * [ci/tests] continue to reduce ci time cost * [misc] update dockerfile (#5776) * [misc] update dockerfile * [misc] update dockerfile * [devops] fix docker ci (#5780) * [Inference]Add Streaming LLM (#5745) * Add Streaming LLM * add some parameters to llama_generation.py * verify streamingllm config * add test_streamingllm.py * modified according to the opinions of review * add Citation * change _block_tables tolist * [hotfix] fix llama flash attention forward (#5777) * [misc] Accelerate CI for zero and dist optim (#5758) * remove fp16 from lamb * remove d2h copy in checking states --------- Co-authored-by: Edenzzzz <wtan45@wisc.edu> * [Test/CI] remove test cases to reduce CI duration (#5753) * [test] smaller gpt2 test case * [test] reduce test cases: tests/test_zero/test_gemini/test_zeroddp_state_dict.py * [test] reduce test cases: tests/test_zero/test_gemini/test_grad_accum.py * [test] reduce test cases tests/test_zero/test_gemini/test_optim.py * Revert "[test] smaller gpt2 test case" Some tests might depend on the size of model (num of chunks) This reverts commit df705a5210b8901645992adf276e320e48766ebf. * [test] reduce test cases: tests/test_checkpoint_io/test_gemini_checkpoint_io.py * [CI] smaller test model for two mwo the two modifid cases * [CI] hardcode gpt model for tests/test_zero/test_gemini/test_search.py since we need a fixed answer there * [hotfix] fix testcase in test_fx/test_tracer (#5779) * [fix] branch for fix testcase; * [fix] fix test_analyzer & test_auto_parallel; * [fix] remove local change about moe; * [fix] rm local change moe; * [fix] fix test_deepfm_model & test_dlrf_model; * [fix] fix test_hf_albert & test_hf_gpt; * [gemini] optimize reduce scatter d2h copy (#5760) * [gemini] optimize reduce scatter d2h copy * [fix] fix missing reduce variable * [refactor] remove legacy async reduce scatter code * [gemini] missing sync * Revert "[refactor] remove legacy async reduce scatter code" This reverts commit 58ad76d4665032bbe548d066116d1c572ce98979. * [gemini] further optimize with async all reduce * [fix] pass flag from manager to chunk * Allow building cuda extension without a device. (#5535) Added FORCE_CUDA environment variable support, to enable building extensions where a GPU device is not present but cuda libraries are. * [misc] fix dist logger (#5782) * [install]fix setup (#5786) * fix * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci --------- Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> * [misc] update requirements (#5787) * [shardformer] fix import (#5788) * upgrade colossal-chat support tp_group>1, add sp for sft * upgrade ppo dpo rm script * run pre-commit * moupdate ci tests, st ci test cases passed, tp failed in generation for ppo, sp is buggy * fix training script * fix ci * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * fix transformers version * remove duplicated test * fix datasets version * remove models that require huggingface auth from ci * remove local data path * update ci * remove baichuan from template test due to transformer version conflict * merge * Refactor modeling by adding attention backend Signed-off-by: char-1ee <xingjianli59@gmail.com> * Fix tests and naming Signed-off-by: char-1ee <xingjianli59@gmail.com> * Pass inference model shard configs for module init Signed-off-by: char-1ee <xingjianli59@gmail.com> * Clean up Signed-off-by: char-1ee <xingjianli59@gmail.com> * replace the customized dataloader setup with the build-in one * replace the customized dataloader setup with the build-in one * Remove flash attention backend Signed-off-by: char-1ee <xingjianli59@gmail.com> * fix readme * Fix test import Signed-off-by: char-1ee <xingjianli59@gmail.com> * update sft trainning script * [Inference]refactor baichuan (#5791) * refactor baichuan * remove unused code and add TODO for lazyinit * [test] fix chatglm test kit (#5793) * [shardformer] fix modeling of bloom and falcon (#5796) * [test] fix qwen2 pytest distLarge (#5797) * [Inference] Fix flash-attn import and add model test (#5794) * Fix torch int32 dtype Signed-off-by: char-1ee <xingjianli59@gmail.com> * Fix flash-attn import Signed-off-by: char-1ee <xingjianli59@gmail.com> * Add generalized model test Signed-off-by: char-1ee <xingjianli59@gmail.com> * Remove exposed path to model Signed-off-by: char-1ee <xingjianli59@gmail.com> * Add default value for use_flash_attn Signed-off-by: char-1ee <xingjianli59@gmail.com> * Rename model test Signed-off-by: char-1ee <xingjianli59@gmail.com> --------- Signed-off-by: char-1ee <xingjianli59@gmail.com> * [Gemini] Use async stream to prefetch and h2d data moving (#5781) * use async stream to prefetch and h2d data moving * Remove redundant code * [gemini] quick fix on possible async operation (#5803) * [gemini] quick fix on possible async operation * [gemini] quick fix on possible async operation * [shardformer] upgrade transformers to 4.39.3 (#5815) * [shardformer]upgrade transformers for gpt2/gptj/whisper (#5807) * [shardformer] fix modeling of gpt2 and gptj * [shardformer] fix whisper modeling * [misc] update requirements --------- Co-authored-by: ver217 <lhx0217@gmail.com> * [shardformer]upgrade transformers for mistral (#5808) * upgrade transformers for mistral * fix * fix * [shardformer]upgrade transformers for llama (#5809) * update transformers fix * fix * fix * [inference] upgrade transformers (#5810) * update transformers fix * fix * fix * fix * fix * [gemini] update transformers for gemini (#5814) --------- Co-authored-by: ver217 <lhx0217@gmail.com> * Support 4d parallel + flash attention (#5789) * support tp + sp + pp * remove comments --------- Co-authored-by: Edenzzzz <wtan45@wisc.edu> --------- Signed-off-by: char-1ee <xingjianli59@gmail.com> Co-authored-by: Yuanheng Zhao <54058983+yuanheng-zhao@users.noreply.github.com> Co-authored-by: Hongxin Liu <lhx0217@gmail.com> Co-authored-by: flybird11111 <1829166702@qq.com> Co-authored-by: duanjunwen <935724073@qq.com> Co-authored-by: yuehuayingxueluo <867460659@qq.com> Co-authored-by: Edenzzzz <wenxuan.tan@wisc.edu> Co-authored-by: Edenzzzz <wtan45@wisc.edu> Co-authored-by: botbw <wang1570@e.ntu.edu.sg> Co-authored-by: Charles Coulombe <ccoulombe@users.noreply.github.com> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: YeAnbang <anbangy2@outlook.com> Co-authored-by: char-1ee <xingjianli59@gmail.com> Co-authored-by: Runyu Lu <77330637+LRY89757@users.noreply.github.com> Co-authored-by: YeAnbang <44796419+YeAnbang@users.noreply.github.com> Co-authored-by: Guangyao Zhang <xjtu521@qq.com> * [zero] fix hook bug * [zero] add low level optimizer back (#5839) * [zero] fix param & refactor * [zero] add back original low level opt * [zero] remove moe related * [zero] pass zero tests * [zero] refactor * [chore] add del func back * [zero] comments and naming (#5840) * [zero] modify api (#5843) * [zero] modify api * [test] remove _grad_store access in tests * [test] fix (#5857) * [CI] skip openmoe CI check * [CI] fox pre-commit * [zero] remove redundant memebr init (#5862) * [misc] remove useless code, modify the pg mesh implementation * [misc] remove useless code, modify the pg mesh implementation * [misc] use tempfile * resolve conflict with main branch * [misc] use tempfile in test_moe_checkpoint.py * [misc] remove useless code, add assertion about sequence parallel, move logger into function * [misc] remove useless code --------- Signed-off-by: char-1ee <xingjianli59@gmail.com> Co-authored-by: Frank Lee <somerlee.9@gmail.com> Co-authored-by: Edenzzzz <wenxuan.tan@wisc.edu> Co-authored-by: Edenzzzz <wtan45@wisc.edu> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: botbw <wang1570@e.ntu.edu.sg> Co-authored-by: Yuanheng Zhao <54058983+yuanheng-zhao@users.noreply.github.com> Co-authored-by: Hongxin Liu <lhx0217@gmail.com> Co-authored-by: flybird11111 <1829166702@qq.com> Co-authored-by: duanjunwen <935724073@qq.com> Co-authored-by: yuehuayingxueluo <867460659@qq.com> Co-authored-by: Charles Coulombe <ccoulombe@users.noreply.github.com> Co-authored-by: YeAnbang <anbangy2@outlook.com> Co-authored-by: char-1ee <xingjianli59@gmail.com> Co-authored-by: Runyu Lu <77330637+LRY89757@users.noreply.github.com> Co-authored-by: YeAnbang <44796419+YeAnbang@users.noreply.github.com> Co-authored-by: Guangyao Zhang <xjtu521@qq.com>
2024-06-28 06:00:08 +00:00
from colossalai.tensor.moe_tensor.api import get_ep_rank, get_ep_size
if HAS_TRITON:
from colossalai.kernel.triton.llama_act_combine_kernel import LlamaActCombine
class MLPExperts(nn.Module):
"""
SparseMLP is a multi-layer perceptron with sparse expert parallel layers.
Args:
num_experts (int): The number of experts
hidden_size (int): The hidden size of MLP
intermediate_size (int): The intermediate size of MLP
expert_parallel (str, optional): The parallelism of experts. Now we have None, EP and TP.
activation (optional): The activation function of MLP
drop_rate (float, optional): The drop rate of MLP
gated (bool, optional): Whether to use gated MLP
use_kernel (bool, optional): Whether to use kernel optimization
"""
def __init__(
self,
num_experts: int,
hidden_size: int,
intermediate_size: int,
[MoE/ZeRO] Moe refactor with zero refactor (#5821) * [moe] removed openmoe-coupled code and rectify mixstral code (#5471) * [Feauture] MoE refractor; Intergration with Mixtral (#5682) * cherry pick from refractor-moe branch * tests passed * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * support ep + zero --------- Co-authored-by: Edenzzzz <wtan45@wisc.edu> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> * add mixtral auto policy & move pipeline forward code to modeling folder * [moe refactor] modify kernel test without Route Class * [moe refactor] add moe tensor test path environment variable to github workflow * fix typos * fix moe test bug due to the code rebase * [moe refactor] fix moe zero test, and little bug in low level zero * fix typo * add moe tensor path to github workflow * remove some useless code * fix typo & unify global variable XX_AXIS logic without using -1 * fix typo & prettifier the code * remove print code & support zero 2 test * remove useless code * reanme function * fix typo * fix typo * Further improve the test code * remove print code * [moe refactor] change test model from fake moe model to mixtral moe layer and remove useless test * [moe refactor] skip some unit test which will be refactored later * [moe refactor] fix unit import error * [moe refactor] fix circular import issues * [moe refactor] remove debug code * [moe refactor] update github workflow * [moe/zero] refactor low level optimizer (#5767) * [zero] refactor low level optimizer * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci --------- Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> * [Feature] MoE refactor with newest version of ZeRO (#5801) * [zero] remove redundant members in BucketStore (#5802) * [zero] align api with previous version * [Moe/Zero] Update MoeHybridParallelPlugin with refactored ZeRO and Fix Zero bug (#5819) * [moe refactor] update unit test with the refactored ZeRO and remove useless test * move moe checkpoint to checkpoint folder and exchange global axis to class member * update moe hybrid parallel plugin with newest version of zero & fix zero working/master params bug * fix zero unit test * Add an assertion to prevent users from using it incorrectly * [hotfix]Solve the compatibility issue of zero refactor (#5823) * [moe refactor] update unit test with the refactored ZeRO and remove useless test * move moe checkpoint to checkpoint folder and exchange global axis to class member * update moe hybrid parallel plugin with newest version of zero & fix zero working/master params bug * fix zero unit test * Add an assertion to prevent users from using it incorrectly * Modify function parameter names to resolve compatibility issues * [zero] fix missing hook removal (#5824) * [MoE] Resolve .github conflict (#5829) * [Fix/Example] Fix Llama Inference Loading Data Type (#5763) * [fix/example] fix llama inference loading dtype * revise loading dtype of benchmark llama3 * [release] update version (#5752) * [release] update version * [devops] update compatibility test * [devops] update compatibility test * [devops] update compatibility test * [devops] update compatibility test * [test] fix ddp plugin test * [test] fix gptj and rpc test * [devops] fix cuda ext compatibility * [inference] fix flash decoding test * [inference] fix flash decoding test * fix (#5765) * [test] Fix/fix testcase (#5770) * [fix] branch for fix testcase; * [fix] fix test_analyzer & test_auto_parallel; * [fix] remove local change about moe; * [fix] rm local change moe; * [Hotfix] Add missing init file in inference.executor (#5774) * [CI/tests] simplify some test case to reduce testing time (#5755) * [ci/tests] simplify some test case to reduce testing time * [ci/tests] continue to remove test case to reduce ci time cost * restore some test config * [ci/tests] continue to reduce ci time cost * [misc] update dockerfile (#5776) * [misc] update dockerfile * [misc] update dockerfile * [devops] fix docker ci (#5780) * [Inference]Add Streaming LLM (#5745) * Add Streaming LLM * add some parameters to llama_generation.py * verify streamingllm config * add test_streamingllm.py * modified according to the opinions of review * add Citation * change _block_tables tolist * [hotfix] fix llama flash attention forward (#5777) * [misc] Accelerate CI for zero and dist optim (#5758) * remove fp16 from lamb * remove d2h copy in checking states --------- Co-authored-by: Edenzzzz <wtan45@wisc.edu> * [Test/CI] remove test cases to reduce CI duration (#5753) * [test] smaller gpt2 test case * [test] reduce test cases: tests/test_zero/test_gemini/test_zeroddp_state_dict.py * [test] reduce test cases: tests/test_zero/test_gemini/test_grad_accum.py * [test] reduce test cases tests/test_zero/test_gemini/test_optim.py * Revert "[test] smaller gpt2 test case" Some tests might depend on the size of model (num of chunks) This reverts commit df705a5210b8901645992adf276e320e48766ebf. * [test] reduce test cases: tests/test_checkpoint_io/test_gemini_checkpoint_io.py * [CI] smaller test model for two mwo the two modifid cases * [CI] hardcode gpt model for tests/test_zero/test_gemini/test_search.py since we need a fixed answer there * [hotfix] fix testcase in test_fx/test_tracer (#5779) * [fix] branch for fix testcase; * [fix] fix test_analyzer & test_auto_parallel; * [fix] remove local change about moe; * [fix] rm local change moe; * [fix] fix test_deepfm_model & test_dlrf_model; * [fix] fix test_hf_albert & test_hf_gpt; * [gemini] optimize reduce scatter d2h copy (#5760) * [gemini] optimize reduce scatter d2h copy * [fix] fix missing reduce variable * [refactor] remove legacy async reduce scatter code * [gemini] missing sync * Revert "[refactor] remove legacy async reduce scatter code" This reverts commit 58ad76d4665032bbe548d066116d1c572ce98979. * [gemini] further optimize with async all reduce * [fix] pass flag from manager to chunk * Allow building cuda extension without a device. (#5535) Added FORCE_CUDA environment variable support, to enable building extensions where a GPU device is not present but cuda libraries are. * [misc] fix dist logger (#5782) * [install]fix setup (#5786) * fix * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci --------- Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> * [misc] update requirements (#5787) * [shardformer] fix import (#5788) * upgrade colossal-chat support tp_group>1, add sp for sft * upgrade ppo dpo rm script * run pre-commit * moupdate ci tests, st ci test cases passed, tp failed in generation for ppo, sp is buggy * fix training script * fix ci * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * fix transformers version * remove duplicated test * fix datasets version * remove models that require huggingface auth from ci * remove local data path * update ci * remove baichuan from template test due to transformer version conflict * merge * Refactor modeling by adding attention backend Signed-off-by: char-1ee <xingjianli59@gmail.com> * Fix tests and naming Signed-off-by: char-1ee <xingjianli59@gmail.com> * Pass inference model shard configs for module init Signed-off-by: char-1ee <xingjianli59@gmail.com> * Clean up Signed-off-by: char-1ee <xingjianli59@gmail.com> * replace the customized dataloader setup with the build-in one * replace the customized dataloader setup with the build-in one * Remove flash attention backend Signed-off-by: char-1ee <xingjianli59@gmail.com> * fix readme * Fix test import Signed-off-by: char-1ee <xingjianli59@gmail.com> * update sft trainning script * [Inference]refactor baichuan (#5791) * refactor baichuan * remove unused code and add TODO for lazyinit * [test] fix chatglm test kit (#5793) * [shardformer] fix modeling of bloom and falcon (#5796) * [test] fix qwen2 pytest distLarge (#5797) * [Inference] Fix flash-attn import and add model test (#5794) * Fix torch int32 dtype Signed-off-by: char-1ee <xingjianli59@gmail.com> * Fix flash-attn import Signed-off-by: char-1ee <xingjianli59@gmail.com> * Add generalized model test Signed-off-by: char-1ee <xingjianli59@gmail.com> * Remove exposed path to model Signed-off-by: char-1ee <xingjianli59@gmail.com> * Add default value for use_flash_attn Signed-off-by: char-1ee <xingjianli59@gmail.com> * Rename model test Signed-off-by: char-1ee <xingjianli59@gmail.com> --------- Signed-off-by: char-1ee <xingjianli59@gmail.com> * [Gemini] Use async stream to prefetch and h2d data moving (#5781) * use async stream to prefetch and h2d data moving * Remove redundant code * [gemini] quick fix on possible async operation (#5803) * [gemini] quick fix on possible async operation * [gemini] quick fix on possible async operation * [shardformer] upgrade transformers to 4.39.3 (#5815) * [shardformer]upgrade transformers for gpt2/gptj/whisper (#5807) * [shardformer] fix modeling of gpt2 and gptj * [shardformer] fix whisper modeling * [misc] update requirements --------- Co-authored-by: ver217 <lhx0217@gmail.com> * [shardformer]upgrade transformers for mistral (#5808) * upgrade transformers for mistral * fix * fix * [shardformer]upgrade transformers for llama (#5809) * update transformers fix * fix * fix * [inference] upgrade transformers (#5810) * update transformers fix * fix * fix * fix * fix * [gemini] update transformers for gemini (#5814) --------- Co-authored-by: ver217 <lhx0217@gmail.com> * Support 4d parallel + flash attention (#5789) * support tp + sp + pp * remove comments --------- Co-authored-by: Edenzzzz <wtan45@wisc.edu> --------- Signed-off-by: char-1ee <xingjianli59@gmail.com> Co-authored-by: Yuanheng Zhao <54058983+yuanheng-zhao@users.noreply.github.com> Co-authored-by: Hongxin Liu <lhx0217@gmail.com> Co-authored-by: flybird11111 <1829166702@qq.com> Co-authored-by: duanjunwen <935724073@qq.com> Co-authored-by: yuehuayingxueluo <867460659@qq.com> Co-authored-by: Edenzzzz <wenxuan.tan@wisc.edu> Co-authored-by: Edenzzzz <wtan45@wisc.edu> Co-authored-by: botbw <wang1570@e.ntu.edu.sg> Co-authored-by: Charles Coulombe <ccoulombe@users.noreply.github.com> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: YeAnbang <anbangy2@outlook.com> Co-authored-by: char-1ee <xingjianli59@gmail.com> Co-authored-by: Runyu Lu <77330637+LRY89757@users.noreply.github.com> Co-authored-by: YeAnbang <44796419+YeAnbang@users.noreply.github.com> Co-authored-by: Guangyao Zhang <xjtu521@qq.com> * [zero] fix hook bug * [zero] add low level optimizer back (#5839) * [zero] fix param & refactor * [zero] add back original low level opt * [zero] remove moe related * [zero] pass zero tests * [zero] refactor * [chore] add del func back * [zero] comments and naming (#5840) * [zero] modify api (#5843) * [zero] modify api * [test] remove _grad_store access in tests * [test] fix (#5857) * [CI] skip openmoe CI check * [CI] fox pre-commit * [zero] remove redundant memebr init (#5862) * [misc] remove useless code, modify the pg mesh implementation * [misc] remove useless code, modify the pg mesh implementation * [misc] use tempfile * resolve conflict with main branch * [misc] use tempfile in test_moe_checkpoint.py * [misc] remove useless code, add assertion about sequence parallel, move logger into function * [misc] remove useless code --------- Signed-off-by: char-1ee <xingjianli59@gmail.com> Co-authored-by: Frank Lee <somerlee.9@gmail.com> Co-authored-by: Edenzzzz <wenxuan.tan@wisc.edu> Co-authored-by: Edenzzzz <wtan45@wisc.edu> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: botbw <wang1570@e.ntu.edu.sg> Co-authored-by: Yuanheng Zhao <54058983+yuanheng-zhao@users.noreply.github.com> Co-authored-by: Hongxin Liu <lhx0217@gmail.com> Co-authored-by: flybird11111 <1829166702@qq.com> Co-authored-by: duanjunwen <935724073@qq.com> Co-authored-by: yuehuayingxueluo <867460659@qq.com> Co-authored-by: Charles Coulombe <ccoulombe@users.noreply.github.com> Co-authored-by: YeAnbang <anbangy2@outlook.com> Co-authored-by: char-1ee <xingjianli59@gmail.com> Co-authored-by: Runyu Lu <77330637+LRY89757@users.noreply.github.com> Co-authored-by: YeAnbang <44796419+YeAnbang@users.noreply.github.com> Co-authored-by: Guangyao Zhang <xjtu521@qq.com>
2024-06-28 06:00:08 +00:00
expert_parallel: Optional[str] = "EP",
activation: Optional[Callable] = None,
drop_rate: Optional[float] = 0,
gated: Optional[bool] = False,
use_kernel: Optional[bool] = False,
):
super().__init__()
assert expert_parallel in ["EP", "TP", None]
self.expert_parallel = expert_parallel
self.num_total_experts = num_experts
self.gated = gated
self.use_kernel = use_kernel
self.hidden_size = hidden_size
self.intermediate_size = intermediate_size
# get expert parallel info
if expert_parallel is not None:
self.num_local_experts, self.moe_info = MOE_MANAGER.get_info(
num_experts, use_tp=True if expert_parallel == "TP" else False
)
# get settings for different parallel
self.ep_size = get_ep_size(self)
if expert_parallel == "TP":
intermediate_size = intermediate_size // self.ep_size
num_experts = self.num_total_experts
else:
num_experts = self.num_local_experts
else:
self.num_local_experts = self.num_total_experts
self.ep_size = 1
if gated:
2023-12-14 09:52:05 +00:00
self.wi_gate = nn.Parameter(
torch.empty(
num_experts, hidden_size, intermediate_size * 2 if activation == "swiglu" else intermediate_size
)
)
self.wi_up = nn.Parameter(torch.empty(num_experts, hidden_size, intermediate_size))
else:
self.wi = nn.Parameter(torch.empty(num_experts, hidden_size, intermediate_size))
self.wo = nn.Parameter(torch.empty(num_experts, intermediate_size, hidden_size))
self.act_name = activation
self.act = get_activation(activation)
self.drop = nn.Dropout(p=drop_rate)
if expert_parallel is not None:
for param in self.parameters():
set_moe_tensor_info(param, self.moe_info)
# init param
self.reset_parameters()
@torch.no_grad()
def reset_parameters(self):
# expert param should be different
if self.expert_parallel is not None:
seed_ctx = Randomizer(get_ep_rank(self)).fork_rng(enable_cpu=True)
else:
seed_ctx = Randomizer(42).fork_rng(enable_cpu=True)
with seed_ctx:
if self.gated:
torch.nn.init.normal_(self.wi_gate, std=math.sqrt(0.1 / self.hidden_size))
torch.nn.init.normal_(self.wi_up, std=math.sqrt(0.1 / self.hidden_size))
else:
torch.nn.init.normal_(self.wi, std=math.sqrt(0.1 / self.hidden_size))
torch.nn.init.normal_(self.wo, std=math.sqrt(0.1 / self.intermediate_size))
def forward(
self,
x: torch.Tensor,
param_slice: Tuple[slice] = (slice(None),),
use_sparse: bool = True,
) -> torch.Tensor:
"""
forward: hidden_size --> intermediate_size --> hidden_size
Args:
x (torch.Tensor): The input tensor of shape (num_groups, num_experts, capacity, hidden_size)
Returns:
torch.Tensor: The output tensor of shape (num_groups, num_experts, capacity, hidden_size)
"""
x = EPGradScalerIn.apply(x, self.ep_size)
e = x.size(1)
h = x.size(-1)
x = x.transpose(0, 1)
inshape = x.shape
x = x.reshape(e, -1, h)
if self.use_kernel and use_sparse:
seq_len = x.shape[1]
with torch.no_grad():
mask = x[:, :, 0] != 0.0
mask = torch.sum(mask, dim=-1)
x_list = []
for i in range(e):
x_list.append(x[i, : mask[i]])
x = x_list
if self.gated:
x_gate = [torch.mm(x[i], self.wi_gate[param_slice][i]) for i in range(e)]
x_up = [torch.mm(x[i], self.wi_up[param_slice][i]) for i in range(e)]
if self.use_kernel and HAS_TRITON and self.act_name == "swiglu":
x = [LlamaActCombine.apply(x_gate[i], x_up[i]) for i in range(e)]
else:
x = [self.act(x_gate[i]) * x_up[i] for i in range(e)]
else:
x = [torch.mm(x[i], self.wi[param_slice][i]) for i in range(e)]
x = [self.act(x[i]) for i in range(e)]
x = [self.drop(x[i]) for i in range(e)]
x = [torch.mm(x[i], self.wo[param_slice][i]) for i in range(e)]
if self.use_kernel and use_sparse:
for i in range(e):
x[i] = torch.nn.functional.pad(x[i], (0, 0, 0, seq_len - x[i].shape[0]), mode="constant", value=0)
x = torch.cat([x[i].unsqueeze(0) for i in range(e)], dim=0)
x = x.reshape(inshape)
x = x.transpose(0, 1).contiguous()
x = EPGradScalerOut.apply(x, self.ep_size)
return x