|
|
|
import torch
|
|
|
|
import triton
|
|
|
|
import triton.language as tl
|
|
|
|
|
|
|
|
|
|
|
|
@triton.jit
|
|
|
|
def prefill_cache_kernel(
|
|
|
|
cos_cache,
|
|
|
|
sin_cache,
|
|
|
|
cumsum_lengths,
|
|
|
|
cos_output,
|
|
|
|
sin_output,
|
|
|
|
cache_stride,
|
|
|
|
hidden_stride,
|
|
|
|
total_length,
|
|
|
|
HIDDEN_DIM: tl.constexpr,
|
|
|
|
N_ELEMENTS: tl.constexpr,
|
|
|
|
BLOCK_SIZE: tl.constexpr,
|
|
|
|
):
|
|
|
|
idx0 = tl.program_id(axis=0)
|
|
|
|
idx1 = tl.program_id(axis=1)
|
|
|
|
idx = idx0 * BLOCK_SIZE + idx1
|
|
|
|
|
|
|
|
# original seq_idx and pos
|
|
|
|
cumsum_lens = tl.load(cumsum_lengths + tl.arange(0, N_ELEMENTS))
|
|
|
|
ori_seq_idx = idx - tl.max(tl.where(cumsum_lens <= idx, cumsum_lens, 0))
|
|
|
|
cos_cache_part = tl.load(
|
|
|
|
cos_cache + ori_seq_idx * cache_stride + tl.arange(0, HIDDEN_DIM) * hidden_stride, mask=idx < total_length
|
|
|
|
)
|
|
|
|
sin_cache_part = tl.load(
|
|
|
|
sin_cache + ori_seq_idx * cache_stride + tl.arange(0, HIDDEN_DIM) * hidden_stride, mask=idx < total_length
|
|
|
|
)
|
|
|
|
tl.store(
|
|
|
|
cos_output + idx * cache_stride + tl.arange(0, HIDDEN_DIM) * hidden_stride,
|
|
|
|
cos_cache_part,
|
|
|
|
mask=idx < total_length,
|
|
|
|
)
|
|
|
|
tl.store(
|
|
|
|
sin_output + idx * cache_stride + tl.arange(0, HIDDEN_DIM) * hidden_stride,
|
|
|
|
sin_cache_part,
|
|
|
|
mask=idx < total_length,
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
@triton.jit
|
|
|
|
def decoding_cache_kernel(
|
|
|
|
cos_cache,
|
|
|
|
sin_cache,
|
|
|
|
lengths,
|
|
|
|
cos_output,
|
|
|
|
sin_output,
|
|
|
|
cache_stride,
|
|
|
|
hidden_stride,
|
|
|
|
HIDDEN_DIM: tl.constexpr,
|
|
|
|
NUM_SEQS: tl.constexpr,
|
|
|
|
BLOCK_SIZE: tl.constexpr,
|
|
|
|
):
|
|
|
|
idx = tl.program_id(0) * BLOCK_SIZE + tl.arange(0, BLOCK_SIZE)
|
|
|
|
ori_seq_idx = tl.load(lengths + idx, mask=(idx < NUM_SEQS), other=None) # [BLOCK_SIZE,]
|
|
|
|
cos_cache_part = tl.load(
|
|
|
|
cos_cache + ori_seq_idx[:, None] * cache_stride + tl.arange(0, HIDDEN_DIM)[None, :] * hidden_stride,
|
|
|
|
mask=idx[:, None] < NUM_SEQS,
|
|
|
|
)
|
|
|
|
sin_cache_part = tl.load(
|
|
|
|
sin_cache + ori_seq_idx[:, None] * cache_stride + tl.arange(0, HIDDEN_DIM)[None, :] * hidden_stride,
|
|
|
|
mask=idx[:, None] < NUM_SEQS,
|
|
|
|
)
|
|
|
|
tl.store(
|
|
|
|
cos_output + (idx[:, None] * cache_stride + tl.arange(0, HIDDEN_DIM)[None, :] * hidden_stride),
|
|
|
|
cos_cache_part,
|
|
|
|
mask=idx[:, None] < NUM_SEQS,
|
|
|
|
)
|
|
|
|
tl.store(
|
|
|
|
sin_output + (idx[:, None] * cache_stride + tl.arange(0, HIDDEN_DIM)[None, :] * hidden_stride),
|
|
|
|
sin_cache_part,
|
|
|
|
mask=idx[:, None] < NUM_SEQS,
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
def get_xine_cache(lengths: torch.Tensor, cos_cache: torch.Tensor, sin_cache: torch.Tensor, is_prompts: bool = False):
|
|
|
|
"""
|
|
|
|
Transform cos/sin cache into no pad sequence, with two different modes.
|
|
|
|
Args:
|
|
|
|
lengths: shape(num_seqs,), stores lenghth of each sequence.
|
|
|
|
cache: shape(max_rotary_position(e.g.2048), head_dim), cos/sin cache constrcuted in model.
|
|
|
|
is_prompts: bool, mark if in prefill mode.
|
|
|
|
For prefill mode:
|
|
|
|
cos/sin cache for each sequence is equal to its length.
|
|
|
|
For decoding mode:
|
|
|
|
cos/sin cache is only needed for the last token.
|
|
|
|
"""
|
|
|
|
assert cos_cache.shape[1] == sin_cache.shape[1]
|
|
|
|
_, hidden_dim = cos_cache.shape
|
|
|
|
num_seqs = lengths.numel()
|
|
|
|
|
|
|
|
if hidden_dim >= 256:
|
|
|
|
num_warps = 16
|
|
|
|
elif hidden_dim >= 128:
|
|
|
|
num_warps = 8
|
|
|
|
else:
|
|
|
|
num_warps = 4
|
|
|
|
|
|
|
|
cache_stride = cos_cache.stride(0)
|
|
|
|
hidden_stride = cos_cache.stride(1)
|
|
|
|
|
|
|
|
if is_prompts:
|
|
|
|
BLOCK_SIZE = 16
|
|
|
|
total_length = lengths.sum().item()
|
|
|
|
cumsum_lens = torch.cumsum(lengths, dim=0)
|
|
|
|
cos_output = torch.empty((total_length, hidden_dim), dtype=cos_cache.dtype, device=cos_cache.device)
|
|
|
|
sin_output = torch.empty((total_length, hidden_dim), dtype=sin_cache.dtype, device=sin_cache.device)
|
|
|
|
grid = (triton.cdiv(total_length, BLOCK_SIZE), BLOCK_SIZE)
|
|
|
|
prefill_cache_kernel[grid](
|
|
|
|
cos_cache,
|
|
|
|
sin_cache,
|
|
|
|
cumsum_lens,
|
|
|
|
cos_output,
|
|
|
|
sin_output,
|
|
|
|
cache_stride,
|
|
|
|
hidden_stride,
|
|
|
|
total_length,
|
|
|
|
HIDDEN_DIM=hidden_dim,
|
|
|
|
N_ELEMENTS=triton.next_power_of_2(num_seqs),
|
|
|
|
BLOCK_SIZE=BLOCK_SIZE,
|
|
|
|
num_warps=num_warps,
|
|
|
|
)
|
|
|
|
else:
|
|
|
|
BLOCK_SIZE = 4
|
|
|
|
nlengths = torch.as_tensor(lengths) - 1
|
|
|
|
cos_output = torch.empty((num_seqs, hidden_dim), dtype=cos_cache.dtype, device=cos_cache.device)
|
|
|
|
sin_output = torch.empty((num_seqs, hidden_dim), dtype=sin_cache.dtype, device=sin_cache.device)
|
|
|
|
grid = (triton.cdiv(num_seqs, BLOCK_SIZE),)
|
|
|
|
decoding_cache_kernel[grid](
|
|
|
|
cos_cache,
|
|
|
|
sin_cache,
|
|
|
|
nlengths,
|
|
|
|
cos_output,
|
|
|
|
sin_output,
|
|
|
|
cache_stride,
|
|
|
|
hidden_stride,
|
|
|
|
HIDDEN_DIM=hidden_dim,
|
|
|
|
NUM_SEQS=num_seqs,
|
|
|
|
BLOCK_SIZE=BLOCK_SIZE,
|
|
|
|
num_warps=num_warps,
|
|
|
|
)
|
|
|
|
|
|
|
|
return cos_output, sin_output
|