|
|
|
#!/usr/bin/env python
|
|
|
|
# -*- encoding: utf-8 -*-
|
|
|
|
|
|
|
|
import torch
|
|
|
|
|
|
|
|
from colossalai.context.parallel_mode import ParallelMode
|
|
|
|
from colossalai.core import global_context as gpc
|
|
|
|
from colossalai.utils import get_current_device, synchronize
|
|
|
|
|
|
|
|
|
|
|
|
def ring_forward(tensor_send_next: torch.Tensor, parallel_mode: ParallelMode):
|
|
|
|
"""Sends a tensor to the next member and recieves a tensor from the previous member.
|
|
|
|
This function returns the recieved tensor from the previous member.
|
|
|
|
|
|
|
|
:param tensor_send_next: Tensor sent to next member
|
|
|
|
:param parallel_mode: Parallel group mode used in this communication
|
|
|
|
:type tensor_send_next: :class:`torch.Tensor`
|
|
|
|
:type parallel_mode: :class:`colossalai.context.ParallelMode`
|
|
|
|
:return: The tensor recieved from the previous
|
|
|
|
:rtype: :class:`torch.Tensor`
|
|
|
|
"""
|
|
|
|
buffer_shape = tensor_send_next.size()
|
|
|
|
|
|
|
|
ops = []
|
|
|
|
current_rank = gpc.get_global_rank()
|
|
|
|
|
|
|
|
tensor_recv_prev = torch.empty(buffer_shape,
|
|
|
|
requires_grad=True,
|
|
|
|
device=get_current_device(),
|
|
|
|
dtype=tensor_send_next.dtype)
|
|
|
|
|
|
|
|
# send to next rank
|
|
|
|
send_next_op = torch.distributed.P2POp(
|
|
|
|
torch.distributed.isend, tensor_send_next,
|
|
|
|
gpc.get_next_global_rank(parallel_mode))
|
|
|
|
ops.append(send_next_op)
|
|
|
|
|
|
|
|
# receive from prev rank
|
|
|
|
recv_prev_op = torch.distributed.P2POp(
|
|
|
|
torch.distributed.irecv, tensor_recv_prev,
|
|
|
|
gpc.get_prev_global_rank(parallel_mode))
|
|
|
|
ops.append(recv_prev_op)
|
|
|
|
|
|
|
|
if current_rank % 2 == 0:
|
|
|
|
ops = ops[::-1]
|
|
|
|
|
|
|
|
reqs = torch.distributed.batch_isend_irecv(ops)
|
|
|
|
for req in reqs:
|
|
|
|
req.wait()
|
|
|
|
|
|
|
|
# To protect against race condition when using batch_isend_irecv().
|
|
|
|
synchronize()
|
|
|
|
|
|
|
|
return tensor_recv_prev
|