You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
ColossalAI/colossalai/amp/naive_amp/naive_amp.py

82 lines
2.4 KiB

Develop/experiments (#59) * Add gradient accumulation, fix lr scheduler * fix FP16 optimizer and adapted torch amp with tensor parallel (#18) * fixed bugs in compatibility between torch amp and tensor parallel and performed some minor fixes * fixed trainer * Revert "fixed trainer" This reverts commit 2e0b0b76990e8d4e337add483d878c0f61cf5097. * improved consistency between trainer, engine and schedule (#23) Co-authored-by: 1SAA <c2h214748@gmail.com> * Split conv2d, class token, positional embedding in 2d, Fix random number in ddp Fix convergence in cifar10, Imagenet1000 * Integrate 1d tensor parallel in Colossal-AI (#39) * fixed 1D and 2D convergence (#38) * optimized 2D operations * fixed 1D ViT convergence problem * Feature/ddp (#49) * remove redundancy func in setup (#19) (#20) * use env to control the language of doc (#24) (#25) * Support TP-compatible Torch AMP and Update trainer API (#27) * Add gradient accumulation, fix lr scheduler * fix FP16 optimizer and adapted torch amp with tensor parallel (#18) * fixed bugs in compatibility between torch amp and tensor parallel and performed some minor fixes * fixed trainer * Revert "fixed trainer" This reverts commit 2e0b0b76990e8d4e337add483d878c0f61cf5097. * improved consistency between trainer, engine and schedule (#23) Co-authored-by: 1SAA <c2h214748@gmail.com> Co-authored-by: 1SAA <c2h214748@gmail.com> Co-authored-by: ver217 <lhx0217@gmail.com> * add an example of ViT-B/16 and remove w_norm clipping in LAMB (#29) * add explanation for ViT example (#35) (#36) * support torch ddp * fix loss accumulation * add log for ddp * change seed * modify timing hook Co-authored-by: Frank Lee <somerlee.9@gmail.com> Co-authored-by: 1SAA <c2h214748@gmail.com> Co-authored-by: binmakeswell <binmakeswell@gmail.com> * Feature/pipeline (#40) * remove redundancy func in setup (#19) (#20) * use env to control the language of doc (#24) (#25) * Support TP-compatible Torch AMP and Update trainer API (#27) * Add gradient accumulation, fix lr scheduler * fix FP16 optimizer and adapted torch amp with tensor parallel (#18) * fixed bugs in compatibility between torch amp and tensor parallel and performed some minor fixes * fixed trainer * Revert "fixed trainer" This reverts commit 2e0b0b76990e8d4e337add483d878c0f61cf5097. * improved consistency between trainer, engine and schedule (#23) Co-authored-by: 1SAA <c2h214748@gmail.com> Co-authored-by: 1SAA <c2h214748@gmail.com> Co-authored-by: ver217 <lhx0217@gmail.com> * add an example of ViT-B/16 and remove w_norm clipping in LAMB (#29) * add explanation for ViT example (#35) (#36) * optimize communication of pipeline parallel * fix grad clip for pipeline Co-authored-by: Frank Lee <somerlee.9@gmail.com> Co-authored-by: 1SAA <c2h214748@gmail.com> Co-authored-by: binmakeswell <binmakeswell@gmail.com> * optimized 3d layer to fix slow computation ; tested imagenet performance with 3d; reworked lr_scheduler config definition; fixed launch args; fixed some printing issues; simplified apis of 3d layers (#51) * Update 2.5d layer code to get a similar accuracy on imagenet-1k dataset * update api for better usability (#58) update api for better usability Co-authored-by: 1SAA <c2h214748@gmail.com> Co-authored-by: ver217 <lhx0217@gmail.com> Co-authored-by: puck_WCR <46049915+WANG-CR@users.noreply.github.com> Co-authored-by: binmakeswell <binmakeswell@gmail.com> Co-authored-by: アマデウス <kurisusnowdeng@users.noreply.github.com> Co-authored-by: BoxiangW <45734921+BoxiangW@users.noreply.github.com>
3 years ago
#!/usr/bin/env python
# -*- encoding: utf-8 -*-
import torch
import torch.nn as nn
from torch import Tensor
from typing import Union, List, Any, Dict
from torch.optim import Optimizer
import torch.cuda.amp as torch_amp
from colossalai.nn.optimizer import ColossalaiOptimizer
from ._fp16_optimizer import FP16Optimizer
class NaiveAMPOptimizer(ColossalaiOptimizer):
"""A wrapper class for optimizer to cast all parameters to fp16
:param optim: A normal optimizer like Adam or SGD
:param args: Args used to initialize FP16 optimizer
:param kwargs: Kwargs used to initialize FP16 optimizer
:type optim: torch.optim.Optimizer
"""
Develop/experiments (#59) * Add gradient accumulation, fix lr scheduler * fix FP16 optimizer and adapted torch amp with tensor parallel (#18) * fixed bugs in compatibility between torch amp and tensor parallel and performed some minor fixes * fixed trainer * Revert "fixed trainer" This reverts commit 2e0b0b76990e8d4e337add483d878c0f61cf5097. * improved consistency between trainer, engine and schedule (#23) Co-authored-by: 1SAA <c2h214748@gmail.com> * Split conv2d, class token, positional embedding in 2d, Fix random number in ddp Fix convergence in cifar10, Imagenet1000 * Integrate 1d tensor parallel in Colossal-AI (#39) * fixed 1D and 2D convergence (#38) * optimized 2D operations * fixed 1D ViT convergence problem * Feature/ddp (#49) * remove redundancy func in setup (#19) (#20) * use env to control the language of doc (#24) (#25) * Support TP-compatible Torch AMP and Update trainer API (#27) * Add gradient accumulation, fix lr scheduler * fix FP16 optimizer and adapted torch amp with tensor parallel (#18) * fixed bugs in compatibility between torch amp and tensor parallel and performed some minor fixes * fixed trainer * Revert "fixed trainer" This reverts commit 2e0b0b76990e8d4e337add483d878c0f61cf5097. * improved consistency between trainer, engine and schedule (#23) Co-authored-by: 1SAA <c2h214748@gmail.com> Co-authored-by: 1SAA <c2h214748@gmail.com> Co-authored-by: ver217 <lhx0217@gmail.com> * add an example of ViT-B/16 and remove w_norm clipping in LAMB (#29) * add explanation for ViT example (#35) (#36) * support torch ddp * fix loss accumulation * add log for ddp * change seed * modify timing hook Co-authored-by: Frank Lee <somerlee.9@gmail.com> Co-authored-by: 1SAA <c2h214748@gmail.com> Co-authored-by: binmakeswell <binmakeswell@gmail.com> * Feature/pipeline (#40) * remove redundancy func in setup (#19) (#20) * use env to control the language of doc (#24) (#25) * Support TP-compatible Torch AMP and Update trainer API (#27) * Add gradient accumulation, fix lr scheduler * fix FP16 optimizer and adapted torch amp with tensor parallel (#18) * fixed bugs in compatibility between torch amp and tensor parallel and performed some minor fixes * fixed trainer * Revert "fixed trainer" This reverts commit 2e0b0b76990e8d4e337add483d878c0f61cf5097. * improved consistency between trainer, engine and schedule (#23) Co-authored-by: 1SAA <c2h214748@gmail.com> Co-authored-by: 1SAA <c2h214748@gmail.com> Co-authored-by: ver217 <lhx0217@gmail.com> * add an example of ViT-B/16 and remove w_norm clipping in LAMB (#29) * add explanation for ViT example (#35) (#36) * optimize communication of pipeline parallel * fix grad clip for pipeline Co-authored-by: Frank Lee <somerlee.9@gmail.com> Co-authored-by: 1SAA <c2h214748@gmail.com> Co-authored-by: binmakeswell <binmakeswell@gmail.com> * optimized 3d layer to fix slow computation ; tested imagenet performance with 3d; reworked lr_scheduler config definition; fixed launch args; fixed some printing issues; simplified apis of 3d layers (#51) * Update 2.5d layer code to get a similar accuracy on imagenet-1k dataset * update api for better usability (#58) update api for better usability Co-authored-by: 1SAA <c2h214748@gmail.com> Co-authored-by: ver217 <lhx0217@gmail.com> Co-authored-by: puck_WCR <46049915+WANG-CR@users.noreply.github.com> Co-authored-by: binmakeswell <binmakeswell@gmail.com> Co-authored-by: アマデウス <kurisusnowdeng@users.noreply.github.com> Co-authored-by: BoxiangW <45734921+BoxiangW@users.noreply.github.com>
3 years ago
def __init__(self, optim: Optimizer, *args, **kwargs):
optim = FP16Optimizer(optimizer=optim, *args, **kwargs)
super().__init__(optim)
def backward(self, loss: Tensor):
"""Backward with gradient scaler
:param loss: loss computed by a loss function
:type loss: torch.Tensor
"""
Develop/experiments (#59) * Add gradient accumulation, fix lr scheduler * fix FP16 optimizer and adapted torch amp with tensor parallel (#18) * fixed bugs in compatibility between torch amp and tensor parallel and performed some minor fixes * fixed trainer * Revert "fixed trainer" This reverts commit 2e0b0b76990e8d4e337add483d878c0f61cf5097. * improved consistency between trainer, engine and schedule (#23) Co-authored-by: 1SAA <c2h214748@gmail.com> * Split conv2d, class token, positional embedding in 2d, Fix random number in ddp Fix convergence in cifar10, Imagenet1000 * Integrate 1d tensor parallel in Colossal-AI (#39) * fixed 1D and 2D convergence (#38) * optimized 2D operations * fixed 1D ViT convergence problem * Feature/ddp (#49) * remove redundancy func in setup (#19) (#20) * use env to control the language of doc (#24) (#25) * Support TP-compatible Torch AMP and Update trainer API (#27) * Add gradient accumulation, fix lr scheduler * fix FP16 optimizer and adapted torch amp with tensor parallel (#18) * fixed bugs in compatibility between torch amp and tensor parallel and performed some minor fixes * fixed trainer * Revert "fixed trainer" This reverts commit 2e0b0b76990e8d4e337add483d878c0f61cf5097. * improved consistency between trainer, engine and schedule (#23) Co-authored-by: 1SAA <c2h214748@gmail.com> Co-authored-by: 1SAA <c2h214748@gmail.com> Co-authored-by: ver217 <lhx0217@gmail.com> * add an example of ViT-B/16 and remove w_norm clipping in LAMB (#29) * add explanation for ViT example (#35) (#36) * support torch ddp * fix loss accumulation * add log for ddp * change seed * modify timing hook Co-authored-by: Frank Lee <somerlee.9@gmail.com> Co-authored-by: 1SAA <c2h214748@gmail.com> Co-authored-by: binmakeswell <binmakeswell@gmail.com> * Feature/pipeline (#40) * remove redundancy func in setup (#19) (#20) * use env to control the language of doc (#24) (#25) * Support TP-compatible Torch AMP and Update trainer API (#27) * Add gradient accumulation, fix lr scheduler * fix FP16 optimizer and adapted torch amp with tensor parallel (#18) * fixed bugs in compatibility between torch amp and tensor parallel and performed some minor fixes * fixed trainer * Revert "fixed trainer" This reverts commit 2e0b0b76990e8d4e337add483d878c0f61cf5097. * improved consistency between trainer, engine and schedule (#23) Co-authored-by: 1SAA <c2h214748@gmail.com> Co-authored-by: 1SAA <c2h214748@gmail.com> Co-authored-by: ver217 <lhx0217@gmail.com> * add an example of ViT-B/16 and remove w_norm clipping in LAMB (#29) * add explanation for ViT example (#35) (#36) * optimize communication of pipeline parallel * fix grad clip for pipeline Co-authored-by: Frank Lee <somerlee.9@gmail.com> Co-authored-by: 1SAA <c2h214748@gmail.com> Co-authored-by: binmakeswell <binmakeswell@gmail.com> * optimized 3d layer to fix slow computation ; tested imagenet performance with 3d; reworked lr_scheduler config definition; fixed launch args; fixed some printing issues; simplified apis of 3d layers (#51) * Update 2.5d layer code to get a similar accuracy on imagenet-1k dataset * update api for better usability (#58) update api for better usability Co-authored-by: 1SAA <c2h214748@gmail.com> Co-authored-by: ver217 <lhx0217@gmail.com> Co-authored-by: puck_WCR <46049915+WANG-CR@users.noreply.github.com> Co-authored-by: binmakeswell <binmakeswell@gmail.com> Co-authored-by: アマデウス <kurisusnowdeng@users.noreply.github.com> Co-authored-by: BoxiangW <45734921+BoxiangW@users.noreply.github.com>
3 years ago
loss = self.optim.scale_loss(loss)
loss.backward()
def step(self):
return self.optim.step()
Develop/experiments (#59) * Add gradient accumulation, fix lr scheduler * fix FP16 optimizer and adapted torch amp with tensor parallel (#18) * fixed bugs in compatibility between torch amp and tensor parallel and performed some minor fixes * fixed trainer * Revert "fixed trainer" This reverts commit 2e0b0b76990e8d4e337add483d878c0f61cf5097. * improved consistency between trainer, engine and schedule (#23) Co-authored-by: 1SAA <c2h214748@gmail.com> * Split conv2d, class token, positional embedding in 2d, Fix random number in ddp Fix convergence in cifar10, Imagenet1000 * Integrate 1d tensor parallel in Colossal-AI (#39) * fixed 1D and 2D convergence (#38) * optimized 2D operations * fixed 1D ViT convergence problem * Feature/ddp (#49) * remove redundancy func in setup (#19) (#20) * use env to control the language of doc (#24) (#25) * Support TP-compatible Torch AMP and Update trainer API (#27) * Add gradient accumulation, fix lr scheduler * fix FP16 optimizer and adapted torch amp with tensor parallel (#18) * fixed bugs in compatibility between torch amp and tensor parallel and performed some minor fixes * fixed trainer * Revert "fixed trainer" This reverts commit 2e0b0b76990e8d4e337add483d878c0f61cf5097. * improved consistency between trainer, engine and schedule (#23) Co-authored-by: 1SAA <c2h214748@gmail.com> Co-authored-by: 1SAA <c2h214748@gmail.com> Co-authored-by: ver217 <lhx0217@gmail.com> * add an example of ViT-B/16 and remove w_norm clipping in LAMB (#29) * add explanation for ViT example (#35) (#36) * support torch ddp * fix loss accumulation * add log for ddp * change seed * modify timing hook Co-authored-by: Frank Lee <somerlee.9@gmail.com> Co-authored-by: 1SAA <c2h214748@gmail.com> Co-authored-by: binmakeswell <binmakeswell@gmail.com> * Feature/pipeline (#40) * remove redundancy func in setup (#19) (#20) * use env to control the language of doc (#24) (#25) * Support TP-compatible Torch AMP and Update trainer API (#27) * Add gradient accumulation, fix lr scheduler * fix FP16 optimizer and adapted torch amp with tensor parallel (#18) * fixed bugs in compatibility between torch amp and tensor parallel and performed some minor fixes * fixed trainer * Revert "fixed trainer" This reverts commit 2e0b0b76990e8d4e337add483d878c0f61cf5097. * improved consistency between trainer, engine and schedule (#23) Co-authored-by: 1SAA <c2h214748@gmail.com> Co-authored-by: 1SAA <c2h214748@gmail.com> Co-authored-by: ver217 <lhx0217@gmail.com> * add an example of ViT-B/16 and remove w_norm clipping in LAMB (#29) * add explanation for ViT example (#35) (#36) * optimize communication of pipeline parallel * fix grad clip for pipeline Co-authored-by: Frank Lee <somerlee.9@gmail.com> Co-authored-by: 1SAA <c2h214748@gmail.com> Co-authored-by: binmakeswell <binmakeswell@gmail.com> * optimized 3d layer to fix slow computation ; tested imagenet performance with 3d; reworked lr_scheduler config definition; fixed launch args; fixed some printing issues; simplified apis of 3d layers (#51) * Update 2.5d layer code to get a similar accuracy on imagenet-1k dataset * update api for better usability (#58) update api for better usability Co-authored-by: 1SAA <c2h214748@gmail.com> Co-authored-by: ver217 <lhx0217@gmail.com> Co-authored-by: puck_WCR <46049915+WANG-CR@users.noreply.github.com> Co-authored-by: binmakeswell <binmakeswell@gmail.com> Co-authored-by: アマデウス <kurisusnowdeng@users.noreply.github.com> Co-authored-by: BoxiangW <45734921+BoxiangW@users.noreply.github.com>
3 years ago
def clip_grad_norm(self, model: nn.Module, max_norm: float):
pass
class NaiveAMPModel(nn.Module):
"""A wrapper class for model to cast the model into fp16 and
automatically cast the input and output
"""
Develop/experiments (#59) * Add gradient accumulation, fix lr scheduler * fix FP16 optimizer and adapted torch amp with tensor parallel (#18) * fixed bugs in compatibility between torch amp and tensor parallel and performed some minor fixes * fixed trainer * Revert "fixed trainer" This reverts commit 2e0b0b76990e8d4e337add483d878c0f61cf5097. * improved consistency between trainer, engine and schedule (#23) Co-authored-by: 1SAA <c2h214748@gmail.com> * Split conv2d, class token, positional embedding in 2d, Fix random number in ddp Fix convergence in cifar10, Imagenet1000 * Integrate 1d tensor parallel in Colossal-AI (#39) * fixed 1D and 2D convergence (#38) * optimized 2D operations * fixed 1D ViT convergence problem * Feature/ddp (#49) * remove redundancy func in setup (#19) (#20) * use env to control the language of doc (#24) (#25) * Support TP-compatible Torch AMP and Update trainer API (#27) * Add gradient accumulation, fix lr scheduler * fix FP16 optimizer and adapted torch amp with tensor parallel (#18) * fixed bugs in compatibility between torch amp and tensor parallel and performed some minor fixes * fixed trainer * Revert "fixed trainer" This reverts commit 2e0b0b76990e8d4e337add483d878c0f61cf5097. * improved consistency between trainer, engine and schedule (#23) Co-authored-by: 1SAA <c2h214748@gmail.com> Co-authored-by: 1SAA <c2h214748@gmail.com> Co-authored-by: ver217 <lhx0217@gmail.com> * add an example of ViT-B/16 and remove w_norm clipping in LAMB (#29) * add explanation for ViT example (#35) (#36) * support torch ddp * fix loss accumulation * add log for ddp * change seed * modify timing hook Co-authored-by: Frank Lee <somerlee.9@gmail.com> Co-authored-by: 1SAA <c2h214748@gmail.com> Co-authored-by: binmakeswell <binmakeswell@gmail.com> * Feature/pipeline (#40) * remove redundancy func in setup (#19) (#20) * use env to control the language of doc (#24) (#25) * Support TP-compatible Torch AMP and Update trainer API (#27) * Add gradient accumulation, fix lr scheduler * fix FP16 optimizer and adapted torch amp with tensor parallel (#18) * fixed bugs in compatibility between torch amp and tensor parallel and performed some minor fixes * fixed trainer * Revert "fixed trainer" This reverts commit 2e0b0b76990e8d4e337add483d878c0f61cf5097. * improved consistency between trainer, engine and schedule (#23) Co-authored-by: 1SAA <c2h214748@gmail.com> Co-authored-by: 1SAA <c2h214748@gmail.com> Co-authored-by: ver217 <lhx0217@gmail.com> * add an example of ViT-B/16 and remove w_norm clipping in LAMB (#29) * add explanation for ViT example (#35) (#36) * optimize communication of pipeline parallel * fix grad clip for pipeline Co-authored-by: Frank Lee <somerlee.9@gmail.com> Co-authored-by: 1SAA <c2h214748@gmail.com> Co-authored-by: binmakeswell <binmakeswell@gmail.com> * optimized 3d layer to fix slow computation ; tested imagenet performance with 3d; reworked lr_scheduler config definition; fixed launch args; fixed some printing issues; simplified apis of 3d layers (#51) * Update 2.5d layer code to get a similar accuracy on imagenet-1k dataset * update api for better usability (#58) update api for better usability Co-authored-by: 1SAA <c2h214748@gmail.com> Co-authored-by: ver217 <lhx0217@gmail.com> Co-authored-by: puck_WCR <46049915+WANG-CR@users.noreply.github.com> Co-authored-by: binmakeswell <binmakeswell@gmail.com> Co-authored-by: アマデウス <kurisusnowdeng@users.noreply.github.com> Co-authored-by: BoxiangW <45734921+BoxiangW@users.noreply.github.com>
3 years ago
def __init__(self,
model: nn.Module,
output_to_fp32: bool = True):
super().__init__()
self.model = model.half()
self._output_to_fp32 = output_to_fp32
def _convert_to_fp16(self, input_: Any):
if isinstance(input_, Tensor) and input_.dtype == torch.float32:
input_ = input_.half()
return input_
def _convert_to_fp32(self, input_: Any):
if isinstance(input_, Tensor) and input_.dtype == torch.float16:
input_ = input_.float()
return input_
def forward(self, *args, **kwargs):
if args:
args = [self._convert_to_fp16(arg) for arg in args]
if kwargs:
for k, v in kwargs.items():
kwargs[k] = self._convert_to_fp16(v)
out = self.model(*args, **kwargs)
if self._output_to_fp32:
if isinstance(out, Tensor):
out = self._convert_to_fp32(out)
elif isinstance(out, (tuple, list)):
out = [self._convert_to_fp32(val) for val in out]
return out