ColossalAI/colossalai/amp/naive_amp/grad_scaler/dynamic_grad_scaler.py

77 lines
2.8 KiB
Python
Raw Normal View History

2022-03-09 03:52:43 +00:00
#!/usr/bin/env python
# -*- encoding: utf-8 -*-
import torch
from .base_grad_scaler import BaseGradScaler
__all__ = ['DynamicGradScaler']
class DynamicGradScaler(BaseGradScaler):
def __init__(self,
initial_scale: int = 2**16,
growth_factor: int = 2,
backoff_factor: float = 0.5,
growth_interval: int = 1000,
min_scale: int = None,
max_scale: int = None,
hysteresis: int = 2,
2022-03-09 03:52:43 +00:00
verbose: bool = False):
super().__init__(initial_scale, verbose)
if min_scale:
self._min_scale = torch.cuda.FloatTensor([min_scale])
else:
self._min_scale = None
if max_scale:
self._max_scale = torch.cuda.FloatTensor([max_scale])
else:
self._max_scale = None
2022-03-09 03:52:43 +00:00
self._growth_factor = growth_factor
self._backoff_factor = backoff_factor
self._growth_interval = growth_interval
self._growth_step = 0
self._hysteresis = hysteresis
self._hysteresis_step = 0
self._sanity_checks()
def _sanity_checks(self) -> None:
if self._min_scale:
assert self._min_scale > 0, 'The minimum gradient scale cannot be zero or negative'
if self._max_scale:
assert self._min_scale > 0, 'The maximum gradient scale cannot be zero or negative'
assert self._growth_factor > 1, 'The growth factor cannot be equal or smaller than 1'
assert self._backoff_factor < 1 and self._backoff_factor > 0, 'The backoff factor must be between 0 and 1'
assert self._hysteresis >= 0, 'The hysteresis cannot be negative'
def update(self, overflow: bool) -> None:
if overflow:
self._hysteresis_step += 1
self._growth_step = 0
if self._hysteresis_step >= self._hysteresis:
self._backoff_scale()
self.log(f"Overflow occurs, the loss scale is adjusted to {self.scale.item()}", ranks=[0])
else:
self._growth_step += 1
if self._growth_step == self._growth_interval:
self._growth_step = 0
self._hysteresis_step = 0
self._grow_scale()
self.log(
f"No overflow for consecutive {self._growth_interval} steps, "
f"the loss scale is adjusted to {self.scale.item()}",
ranks=[0])
def _backoff_scale(self) -> None:
self._scale = self._scale * self._backoff_factor
if self._min_scale:
self._scale = torch.max(self._scale, self._min_scale)
def _grow_scale(self) -> None:
self._scale = self._scale * self._growth_factor
if self._max_scale:
self._scale = torch.min(self._scale, self._max_scale)