2022-03-09 03:52:43 +00:00
|
|
|
#!/usr/bin/env python
|
|
|
|
# -*- encoding: utf-8 -*-
|
|
|
|
|
|
|
|
import torch
|
|
|
|
from .base_grad_scaler import BaseGradScaler
|
|
|
|
|
|
|
|
__all__ = ['DynamicGradScaler']
|
|
|
|
|
|
|
|
|
|
|
|
class DynamicGradScaler(BaseGradScaler):
|
|
|
|
|
|
|
|
def __init__(self,
|
|
|
|
initial_scale: int = 2**16,
|
|
|
|
growth_factor: int = 2,
|
|
|
|
backoff_factor: float = 0.5,
|
|
|
|
growth_interval: int = 1000,
|
|
|
|
min_scale: int = None,
|
|
|
|
max_scale: int = None,
|
2022-03-15 02:05:38 +00:00
|
|
|
hysteresis: int = 2,
|
2022-03-09 03:52:43 +00:00
|
|
|
verbose: bool = False):
|
|
|
|
super().__init__(initial_scale, verbose)
|
2022-03-15 02:05:38 +00:00
|
|
|
if min_scale:
|
|
|
|
self._min_scale = torch.cuda.FloatTensor([min_scale])
|
|
|
|
else:
|
|
|
|
self._min_scale = None
|
|
|
|
|
|
|
|
if max_scale:
|
|
|
|
self._max_scale = torch.cuda.FloatTensor([max_scale])
|
|
|
|
else:
|
|
|
|
self._max_scale = None
|
|
|
|
|
2022-03-09 03:52:43 +00:00
|
|
|
self._growth_factor = growth_factor
|
|
|
|
self._backoff_factor = backoff_factor
|
|
|
|
self._growth_interval = growth_interval
|
|
|
|
self._growth_step = 0
|
|
|
|
self._hysteresis = hysteresis
|
|
|
|
self._hysteresis_step = 0
|
|
|
|
self._sanity_checks()
|
|
|
|
|
|
|
|
def _sanity_checks(self) -> None:
|
|
|
|
if self._min_scale:
|
|
|
|
assert self._min_scale > 0, 'The minimum gradient scale cannot be zero or negative'
|
|
|
|
if self._max_scale:
|
|
|
|
assert self._min_scale > 0, 'The maximum gradient scale cannot be zero or negative'
|
|
|
|
assert self._growth_factor > 1, 'The growth factor cannot be equal or smaller than 1'
|
|
|
|
assert self._backoff_factor < 1 and self._backoff_factor > 0, 'The backoff factor must be between 0 and 1'
|
|
|
|
assert self._hysteresis >= 0, 'The hysteresis cannot be negative'
|
|
|
|
|
|
|
|
def update(self, overflow: bool) -> None:
|
|
|
|
if overflow:
|
|
|
|
self._hysteresis_step += 1
|
|
|
|
self._growth_step = 0
|
|
|
|
|
|
|
|
if self._hysteresis_step >= self._hysteresis:
|
|
|
|
self._backoff_scale()
|
|
|
|
self.log(f"Overflow occurs, the loss scale is adjusted to {self.scale.item()}", ranks=[0])
|
|
|
|
else:
|
|
|
|
self._growth_step += 1
|
|
|
|
if self._growth_step == self._growth_interval:
|
|
|
|
self._growth_step = 0
|
|
|
|
self._hysteresis_step = 0
|
|
|
|
self._grow_scale()
|
|
|
|
self.log(
|
|
|
|
f"No overflow for consecutive {self._growth_interval} steps, "
|
|
|
|
f"the loss scale is adjusted to {self.scale.item()}",
|
|
|
|
ranks=[0])
|
|
|
|
|
|
|
|
def _backoff_scale(self) -> None:
|
|
|
|
self._scale = self._scale * self._backoff_factor
|
|
|
|
if self._min_scale:
|
|
|
|
self._scale = torch.max(self._scale, self._min_scale)
|
|
|
|
|
|
|
|
def _grow_scale(self) -> None:
|
|
|
|
self._scale = self._scale * self._growth_factor
|
|
|
|
if self._max_scale:
|
|
|
|
self._scale = torch.min(self._scale, self._max_scale)
|