You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
ColossalAI/colossalai/utils/checkpoint_io/convertor.py

228 lines
9.6 KiB

from abc import ABC, abstractmethod
from collections import defaultdict
from typing import Any, Callable, Dict, List, Optional
from torch import Tensor
from .distributed import merge_param, unmerge_param
from .meta import ParamDistMeta, RedistMeta
from .utils import (ModelCheckpointSharder, OptimizerCheckpointSharder, run_if_not_none)
class CheckpointConvertor(ABC):
@abstractmethod
def append(self, shard_dict: Dict[int, dict], dist_meta_list: List[Optional[Dict[str, ParamDistMeta]]]) -> None:
pass
@abstractmethod
def complete(self) -> None:
pass
class ModelCheckpointConvertor(CheckpointConvertor):
def __init__(self, param_count: Dict[str, int]) -> None:
super().__init__()
self.param_count = param_count
self.buffer: Dict[str, Dict[int, Tensor]] = defaultdict(dict)
@abstractmethod
def convert_tensors(self, key: str, tensors: List[Tensor], dist_metas: List[ParamDistMeta]) -> None:
pass
def append(self, shard_dict: Dict[int, dict], dist_meta_list: List[Optional[Dict[str, ParamDistMeta]]]) -> None:
for rank, state_dict in shard_dict.items():
for k, tensor in state_dict.items():
self.buffer[k][rank] = tensor
converted_keys = set()
for k, rank_dict in self.buffer.items():
if len(rank_dict) == self.param_count[k]:
tensors = []
dist_metas = []
for rank, tensor in rank_dict.items():
tensors.append(tensor)
if dist_meta_list[rank] is not None:
dist_metas.append(dist_meta_list[rank][k])
self.convert_tensors(k, tensors, dist_metas)
converted_keys.add(k)
for k in converted_keys:
del self.buffer[k]
def complete(self) -> None:
assert len(self.buffer) == 0
class ModelCheckpointMerger(ModelCheckpointConvertor):
def __init__(self, max_shard_size: int, save_fn: Callable[[dict], Any], param_count: Dict[str, int]) -> None:
super().__init__(param_count)
self.sharder = ModelCheckpointSharder(max_shard_size)
self.save_fn = save_fn
def convert_tensors(self, key: str, tensors: List[Tensor], dist_metas: List[ParamDistMeta]) -> None:
assert len(dist_metas) == len(tensors)
tensor = merge_param(tensors, dist_metas)
shard = self.sharder.append(key, tensor)
run_if_not_none(self.save_fn, shard)
def complete(self) -> None:
super().complete()
run_if_not_none(self.save_fn, self.sharder.complete())
class ModelCheckpointRedistor(ModelCheckpointConvertor):
def __init__(self, max_shard_size: int, save_fns: List[Callable[[dict], Any]], param_count: Dict[str, int],
redist_meta: RedistMeta) -> None:
super().__init__(param_count)
self.save_fns = save_fns
self.redist_meta = redist_meta
nprocs = len(save_fns)
self.sharders = [ModelCheckpointSharder(max_shard_size) for _ in range(nprocs)]
self.rank_map = defaultdict(lambda: defaultdict(lambda: defaultdict(list)))
for k, rank_meta in redist_meta.rank_meta.items():
for rank, rank_info in rank_meta.items():
self.rank_map[k][rank_info.tp_rank][rank_info.dp_rank].append(rank)
def convert_tensors(self, key: str, tensors: List[Tensor], dist_metas: List[ParamDistMeta]) -> None:
if len(dist_metas) == 0:
# already global
tensor = tensors[0]
else:
assert len(dist_metas) == len(tensors)
tensor = merge_param(tensors, dist_metas)
for tp_rank, tensor_list in enumerate(unmerge_param(tensor, self.redist_meta.param_meta[key])):
for dp_rank, t in enumerate(tensor_list):
for rank in self.rank_map[key][tp_rank][dp_rank]:
shard = self.sharders[rank].append(key, t)
run_if_not_none(self.save_fns[rank], shard)
def complete(self) -> None:
super().complete()
for rank, save_fn in enumerate(self.save_fns):
run_if_not_none(save_fn, self.sharders[rank].complete())
class OptimizerCheckpointConvertor(CheckpointConvertor):
def __init__(self, param_count: Dict[str, int], param_to_os: Optional[Dict[str, int]],
paired_os: Optional[Dict[int, dict]]) -> None:
super().__init__()
self.param_count = param_count
self.param_to_os = param_to_os
self.paired_os = paired_os
self.buffer: Dict[int, Dict[int, dict]] = defaultdict(dict)
self.os_to_param = {v: k for k, v in param_to_os.items()}
@abstractmethod
def setup(self, param_groups: dict) -> None:
pass
@abstractmethod
def convert_states(self, idx: int, states: List[dict], dist_metas: List[ParamDistMeta]) -> None:
pass
def append(self, shard_dict: Dict[int, dict], dist_meta_list: List[Optional[Dict[str, ParamDistMeta]]]) -> None:
for rank, state_dict in shard_dict.items():
self.setup(state_dict['param_groups'])
for idx, state in state_dict['state'].items():
self.buffer[idx][rank] = state
converted_indices = set()
for idx, rank_dict in self.buffer.items():
if len(rank_dict) == self.param_count[self.os_to_param[idx]]:
states = []
dist_metas = []
for rank, state in rank_dict.items():
states.append(state)
if dist_meta_list[rank] is not None:
dist_metas.append(dist_meta_list[rank][self.os_to_param[idx]])
self.convert_states(idx, states, dist_metas)
converted_indices.add(idx)
for idx in converted_indices:
del self.buffer[idx]
def complete(self) -> None:
assert len(self.buffer) == 0
class OptimizerCheckpointMerger(OptimizerCheckpointConvertor):
def __init__(self, max_shard_size: int, save_fn: Callable[[dict], Any], param_count: Dict[str, int],
param_to_os: Optional[Dict[str, int]], paired_os: Optional[Dict[int, dict]]) -> None:
super().__init__(param_count, param_to_os, paired_os)
self.max_shard_size = max_shard_size
self.save_fn = save_fn
self.sharder = None
def setup(self, param_groups: dict) -> None:
if self.sharder is None:
self.sharder = OptimizerCheckpointSharder(self.max_shard_size, param_groups)
def convert_states(self, idx: int, states: List[dict], dist_metas: List[ParamDistMeta]) -> None:
assert len(dist_metas) == len(states)
new_state = {}
for state_key, state_tensor in states[0].items():
if self.paired_os[idx][state_key]:
new_state[state_key] = merge_param([state[state_key] for state in states], dist_metas)
else:
new_state[state_key] = state_tensor
shard = self.sharder.append(idx, new_state)
run_if_not_none(self.save_fn, shard)
def complete(self) -> None:
super().complete()
run_if_not_none(self.save_fn, self.sharder.complete())
class OptimizerCheckpointRedistor(OptimizerCheckpointConvertor):
def __init__(self, max_shard_size: int, save_fns: List[Callable[[dict], Any]], param_count: Dict[str, int],
param_to_os: Optional[Dict[str, int]], paired_os: Optional[Dict[int, dict]],
redist_meta: RedistMeta) -> None:
super().__init__(param_count, param_to_os, paired_os)
self.max_shard_size = max_shard_size
self.save_fns = save_fns
self.redist_meta = redist_meta
self.sharders: List[OptimizerCheckpointSharder] = []
self.rank_map = defaultdict(lambda: defaultdict(lambda: defaultdict(list)))
for k, rank_meta in redist_meta.rank_meta.items():
for rank, rank_info in rank_meta.items():
self.rank_map[k][rank_info.tp_rank][rank_info.dp_rank].append(rank)
def setup(self, param_groups: dict) -> None:
if len(self.sharders) == 0:
nprocs = len(self.save_fns)
for _ in range(nprocs):
self.sharders.append(OptimizerCheckpointSharder(self.max_shard_size, param_groups))
def convert_states(self, idx: int, states: List[dict], dist_metas: List[ParamDistMeta]) -> None:
need_merge: bool = True
if len(dist_metas) == 0:
need_merge = False
else:
assert len(dist_metas) == len(states)
new_states = [{} for _ in range(len(self.save_fns))]
for state_key, state_tensor in states[0].items():
if self.paired_os[idx][state_key]:
if need_merge:
tensor = merge_param([state[state_key] for state in states], dist_metas)
else:
tensor = state_tensor
for tp_rank, tensor_list in enumerate(
unmerge_param(tensor, self.redist_meta.param_meta[self.os_to_param[idx]])):
for dp_rank, t in enumerate(tensor_list):
for rank in self.rank_map[self.os_to_param[idx]][tp_rank][dp_rank]:
new_states[rank][state_key] = t
else:
for new_state in new_states:
new_state[state_key] = state_tensor
for rank, new_state in enumerate(new_states):
shard = self.sharders[rank].append(idx, new_state)
run_if_not_none(self.save_fns[rank], shard)
def complete(self) -> None:
super().complete()
for rank, save_fn in enumerate(self.save_fns):
run_if_not_none(save_fn, self.sharders[rank].complete())