ColossalAI/tests/test_autochunk/openfold/primitives.py

530 lines
15 KiB
Python
Raw Normal View History

2022-12-29 03:48:11 +00:00
# Copyright 2021 AlQuraishi Laboratory
# Copyright 2021 DeepMind Technologies Limited
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from functools import partial
import math
from typing import Optional, Callable, List, Tuple, Sequence
import numpy as np
import torch
import torch.nn as nn
2023-01-06 03:39:26 +00:00
from .checkpointing import get_checkpoint_fn
from .tensor_utils import (
2022-12-29 03:48:11 +00:00
permute_final_dims,
flatten_final_dims,
_chunk_slice,
)
def _prod(nums):
out = 1
for n in nums:
out = out * n
return out
def _calculate_fan(linear_weight_shape, fan="fan_in"):
fan_out, fan_in = linear_weight_shape
if fan == "fan_in":
f = fan_in
elif fan == "fan_out":
f = fan_out
elif fan == "fan_avg":
f = (fan_in + fan_out) / 2
else:
raise ValueError("Invalid fan option")
return f
def glorot_uniform_init_(weights):
nn.init.xavier_uniform_(weights, gain=1)
def final_init_(weights):
with torch.no_grad():
weights.fill_(0.0)
def gating_init_(weights):
with torch.no_grad():
weights.fill_(0.0)
def normal_init_(weights):
torch.nn.init.kaiming_normal_(weights, nonlinearity="linear")
def ipa_point_weights_init_(weights):
with torch.no_grad():
softplus_inverse_1 = 0.541324854612918
weights.fill_(softplus_inverse_1)
class Linear(nn.Linear):
"""
A Linear layer with built-in nonstandard initializations. Called just
like torch.nn.Linear.
Implements the initializers in 1.11.4, plus some additional ones found
in the code.
"""
def __init__(
self,
in_dim: int,
out_dim: int,
bias: bool = True,
init: str = "default",
init_fn: Optional[Callable[[torch.Tensor, torch.Tensor], None]] = None,
):
"""
Args:
in_dim:
The final dimension of inputs to the layer
out_dim:
The final dimension of layer outputs
bias:
Whether to learn an additive bias. True by default
init:
The initializer to use. Choose from:
"default": LeCun fan-in truncated normal initialization
"relu": He initialization w/ truncated normal distribution
"glorot": Fan-average Glorot uniform initialization
"gating": Weights=0, Bias=1
"normal": Normal initialization with std=1/sqrt(fan_in)
"final": Weights=0, Bias=0
Overridden by init_fn if the latter is not None.
init_fn:
A custom initializer taking weight and bias as inputs.
Overrides init if not None.
"""
super(Linear, self).__init__(in_dim, out_dim, bias=bias)
if bias:
with torch.no_grad():
self.bias.fill_(0)
if init_fn is not None:
init_fn(self.weight, self.bias)
else:
if init == "default":
normal_init_(self.weight)
elif init == "relu":
normal_init_(self.weight)
elif init == "glorot":
glorot_uniform_init_(self.weight)
elif init == "gating":
gating_init_(self.weight)
if bias:
with torch.no_grad():
self.bias.fill_(1.0)
elif init == "normal":
normal_init_(self.weight)
elif init == "final":
final_init_(self.weight)
else:
raise ValueError("Invalid init string.")
class LayerNorm(nn.Module):
def __init__(self, c_in, eps=1e-5):
super(LayerNorm, self).__init__()
self.c_in = (c_in,)
self.eps = eps
self.weight = nn.Parameter(torch.ones(c_in))
self.bias = nn.Parameter(torch.zeros(c_in))
def forward(self, x):
out = nn.functional.layer_norm(
x,
self.c_in,
self.weight,
self.bias,
self.eps,
)
return out
@torch.jit.ignore
def softmax(t: torch.Tensor, dim: int = -1) -> torch.Tensor:
"""
Softmax, but without automatic casting to fp32 when the input is of
type bfloat16
"""
s = torch.nn.functional.softmax(t, dim=dim)
return s
#@torch.jit.script
def _attention(query: torch.Tensor, key: torch.Tensor, value: torch.Tensor,
biases: List[torch.Tensor]) -> torch.Tensor:
# [*, H, Q, C_hidden]
query = permute_final_dims(query, (1, 0, 2))
# [*, H, C_hidden, K]
key = permute_final_dims(key, (1, 2, 0))
# [*, H, V, C_hidden]
value = permute_final_dims(value, (1, 0, 2))
# [*, H, Q, K]
a = torch.matmul(query, key)
for b in biases:
a += b
a = softmax(a, -1)
# [*, H, Q, C_hidden]
a = torch.matmul(a, value)
# [*, Q, H, C_hidden]
a = a.transpose(-2, -3)
return a
@torch.jit.ignore
def _attention_chunked_trainable(
query,
key,
value,
biases,
chunk_size,
chunk_dim,
checkpoint,
):
if (checkpoint and len(biases) > 2):
raise ValueError("Checkpointed version permits only permits two bias terms")
def _checkpointable_attention(q, k, v, b1, b2):
bs = [b for b in [b1, b2] if b is not None]
return _attention(q, k, v, bs)
o_chunks = []
checkpoint_fn = get_checkpoint_fn()
count = query.shape[chunk_dim]
for start in range(0, count, chunk_size):
end = start + chunk_size
idx = [slice(None)] * len(query.shape)
idx[chunk_dim] = slice(start, end)
idx_tup = tuple(idx)
q_chunk = query[idx_tup]
k_chunk = key[idx_tup]
v_chunk = value[idx_tup]
def _slice_bias(b):
idx[chunk_dim] = (slice(start, end) if b.shape[chunk_dim] != 1 else slice(None))
return b[tuple(idx)]
if (checkpoint):
bias_1_chunk, bias_2_chunk = [
_slice_bias(b) if b is not None else None for b in (biases + [None, None])[:2]
]
o_chunk = checkpoint_fn(_checkpointable_attention, q_chunk, k_chunk, v_chunk,
bias_1_chunk, bias_2_chunk)
else:
bias_chunks = [_slice_bias(b) for b in biases]
o_chunk = _attention(q_chunk, k_chunk, v_chunk, bias_chunks)
o_chunks.append(o_chunk)
o = torch.cat(o_chunks, dim=chunk_dim)
return o
class Attention(nn.Module):
"""
Standard multi-head attention using AlphaFold's default layer
initialization. Allows multiple bias vectors.
"""
def __init__(
self,
c_q: int,
c_k: int,
c_v: int,
c_hidden: int,
no_heads: int,
gating: bool = True,
):
"""
Args:
c_q:
Input dimension of query data
c_k:
Input dimension of key data
c_v:
Input dimension of value data
c_hidden:
Per-head hidden dimension
no_heads:
Number of attention heads
gating:
Whether the output should be gated using query data
"""
super(Attention, self).__init__()
self.c_q = c_q
self.c_k = c_k
self.c_v = c_v
self.c_hidden = c_hidden
self.no_heads = no_heads
self.gating = gating
# DISCREPANCY: c_hidden is not the per-head channel dimension, as
# stated in the supplement, but the overall channel dimension.
self.linear_q = Linear(self.c_q, self.c_hidden * self.no_heads, bias=False, init="glorot")
self.linear_k = Linear(self.c_k, self.c_hidden * self.no_heads, bias=False, init="glorot")
self.linear_v = Linear(self.c_v, self.c_hidden * self.no_heads, bias=False, init="glorot")
self.linear_o = Linear(self.c_hidden * self.no_heads, self.c_q, init="final")
self.linear_g = None
if self.gating:
self.linear_g = Linear(self.c_q, self.c_hidden * self.no_heads, init="gating")
self.sigmoid = nn.Sigmoid()
def _prep_qkv(self, q_x: torch.Tensor,
kv_x: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
# [*, Q/K/V, H * C_hidden]
q = self.linear_q(q_x)
k = self.linear_k(kv_x)
v = self.linear_v(kv_x)
# [*, Q/K, H, C_hidden]
q = q.view(q.shape[:-1] + (self.no_heads, -1))
k = k.view(k.shape[:-1] + (self.no_heads, -1))
v = v.view(v.shape[:-1] + (self.no_heads, -1))
q /= math.sqrt(self.c_hidden)
return q, k, v
def _wrap_up(self, o: torch.Tensor, q_x: torch.Tensor) -> torch.Tensor:
if (self.linear_g is not None):
g = self.sigmoid(self.linear_g(q_x))
# [*, Q, H, C_hidden]
g = g.view(g.shape[:-1] + (self.no_heads, -1))
o = o * g
# [*, Q, H * C_hidden]
o = flatten_final_dims(o, 2)
# [*, Q, C_q]
o = self.linear_o(o)
return o
def forward(
self,
q_x: torch.Tensor,
kv_x: torch.Tensor,
biases: Optional[List[torch.Tensor]] = None,
use_lma: bool = False,
q_chunk_size: Optional[int] = None,
kv_chunk_size: Optional[int] = None,
) -> torch.Tensor:
"""
Args:
q_x:
[*, Q, C_q] query data
kv_x:
[*, K, C_k] key data
biases:
List of biases that broadcast to [*, H, Q, K]
use_lma:
Whether to use low-memory attention
q_chunk_size:
Query chunk size (for LMA)
kv_chunk_size:
Key/Value chunk size (for LMA)
Returns
[*, Q, C_q] attention update
"""
if (biases is None):
biases = []
if (use_lma and (q_chunk_size is None or kv_chunk_size is None)):
raise ValueError("If use_lma is specified, q_chunk_size and kv_chunk_size must "
"be provided")
q, k, v = self._prep_qkv(q_x, kv_x)
if (use_lma):
biases = [b.expand(b.shape[:-2] + (q_x.shape[-2],) + (kv_x.shape[-2],)) for b in biases]
o = _lma(q, k, v, biases, q_chunk_size, kv_chunk_size)
else:
o = _attention(q, k, v, biases)
o = self._wrap_up(o, q_x)
return o
class GlobalAttention(nn.Module):
def __init__(self, c_in, c_hidden, no_heads, inf, eps):
super(GlobalAttention, self).__init__()
self.c_in = c_in
self.c_hidden = c_hidden
self.no_heads = no_heads
self.inf = inf
self.eps = eps
self.linear_q = Linear(c_in, c_hidden * no_heads, bias=False, init="glorot")
self.linear_k = Linear(
c_in,
c_hidden,
bias=False,
init="glorot",
)
self.linear_v = Linear(
c_in,
c_hidden,
bias=False,
init="glorot",
)
self.linear_g = Linear(c_in, c_hidden * no_heads, init="gating")
self.linear_o = Linear(c_hidden * no_heads, c_in, init="final")
self.sigmoid = nn.Sigmoid()
def forward(self, m: torch.Tensor, mask: torch.Tensor) -> torch.Tensor:
# [*, N_res, C_in]
q = torch.sum(m * mask.unsqueeze(-1),
dim=-2) / (torch.sum(mask, dim=-1)[..., None] + self.eps)
# [*, N_res, H * C_hidden]
q = self.linear_q(q)
q *= (self.c_hidden**(-0.5))
# [*, N_res, H, C_hidden]
q = q.view(q.shape[:-1] + (self.no_heads, -1))
# [*, N_res, N_seq, C_hidden]
k = self.linear_k(m)
v = self.linear_v(m)
# [*, N_res, H, N_seq]
a = torch.matmul(
q,
k.transpose(-1, -2), # [*, N_res, C_hidden, N_seq]
)
bias = (self.inf * (mask - 1))[..., :, None, :]
a += bias
a = softmax(a)
# [*, N_res, H, C_hidden]
o = torch.matmul(
a,
v,
)
# [*, N_res, N_seq, C_hidden]
g = self.sigmoid(self.linear_g(m))
# [*, N_res, N_seq, H, C_hidden]
g = g.view(g.shape[:-1] + (self.no_heads, -1))
# [*, N_res, N_seq, H, C_hidden]
o = o.unsqueeze(-3) * g
# [*, N_res, N_seq, H * C_hidden]
o = o.reshape(o.shape[:-2] + (-1,))
# [*, N_res, N_seq, C_in]
m = self.linear_o(o)
return m
def _lma(
q: torch.Tensor,
k: torch.Tensor,
v: torch.Tensor,
biases: List[torch.Tensor],
q_chunk_size: int,
kv_chunk_size: int,
):
no_q, no_kv = q.shape[-3], k.shape[-3]
# [*, Q, H, C_hidden]
o = q.new_zeros(q.shape)
for q_s in range(0, no_q, q_chunk_size):
q_chunk = q[..., q_s:q_s + q_chunk_size, :, :]
large_bias_chunks = [b[..., q_s:q_s + q_chunk_size, :] for b in biases]
maxes = []
weights = []
values = []
for kv_s in range(0, no_kv, kv_chunk_size):
k_chunk = k[..., kv_s:kv_s + kv_chunk_size, :, :]
v_chunk = v[..., kv_s:kv_s + kv_chunk_size, :, :]
small_bias_chunks = [b[..., kv_s:kv_s + kv_chunk_size] for b in large_bias_chunks]
a = torch.einsum(
"...qhd,...khd->...hqk",
q_chunk,
k_chunk,
)
for b in small_bias_chunks:
a += b
a = a.transpose(-2, -3)
max_a = torch.max(a, dim=-1, keepdim=True)[0]
exp_a = torch.exp(a - max_a)
exp_v = torch.einsum("...vhf,...qhv->...qhf", v_chunk, exp_a)
maxes.append(max_a.detach().squeeze(-1))
weights.append(torch.sum(exp_a, dim=-1))
values.append(exp_v)
chunk_max = torch.stack(maxes, dim=-3)
chunk_weights = torch.stack(weights, dim=-3)
chunk_values = torch.stack(values, dim=-4)
global_max = torch.max(chunk_max, dim=-3, keepdim=True)[0]
max_diffs = torch.exp(chunk_max - global_max)
chunk_values *= max_diffs.unsqueeze(-1)
chunk_weights *= max_diffs
all_values = torch.sum(chunk_values, dim=-4)
all_weights = torch.sum(chunk_weights.unsqueeze(-1), dim=-4)
q_chunk_out = all_values / all_weights
o[..., q_s:q_s + q_chunk_size, :, :] = q_chunk_out
return o